skip to main content


This content will become publicly available on March 7, 2025

Title: Phase behavior of lyotropic alkyl thioglycolipid surfactants: Effects of sugar headgroup and alkyl tail length
Abstract

The lyotropic properties of alkyl thioglycosides with varying sugar headgroup (lactose, cellobiose, maltose, galactose, or glucose) and alkyl chain length (octyl, decyl, or dodecyl chains) are investigated by surface tensiometry, visual observation, and fluorescence spectroscopy. The results substantiate that the glycosidic S‐linkage confers considerably different solution aggregation behavior on these surfactants relative to their O‐linked counterparts, where the properties of the latter are known. The materials properties of the aggregated structures from the alkyl thioglycosides vary considerably. Micelles are formed by octyl thiocellobioside and all alkyl thiomaltosides. Turbid aggregate solutions are formed by the alkyl thioglucosides and octyl thiogalactoside, whereas the longer chain alkyl thiogalactosides are minimally soluble. Fluorescence spectroscopy of these systems confirms their aggregation in lamellar‐like structures. The alkyl thiocellobiosides and alkyl thiolactosides form hydrogels from these low‐molecular weight materials at concentrations almost an order of magnitude lower than gels using other low‐molecular weight materials. Here, hydrogels form at concentrations <0.3 wt% with some forming hydrogels at concentrations as low as 0.03 wt% from alkyl thiocellobiosides and thiolactosides, with hydrogel properties differing significantly with this slight change in the sugar headgroup. Alkyl thiocellobiosides form a nanofiber network and alkyl thiolactosides form globular hydrogels. Overall, these results clearly document materials properties that can readily be controlled and designed depending on molecular structure.

 
more » « less
Award ID(s):
1954467
PAR ID:
10555189
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Surfactants and Detergents
Volume:
27
Issue:
5
ISSN:
1097-3958
Format(s):
Medium: X Size: p. 737-752
Size(s):
p. 737-752
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied. 
    more » « less
  2. The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetal-protected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, and rheology. The gelation mechanisms were further elucidated using 1H NMR spectroscopy at different temperatures. The isopropyl carbamate hydrogelator 7 formed hydrogels at 0.2 wt% and also formed gels with several tetra alkyl ammonium salts, and showed effectiveness in the creation of gel electrolytes. The formation of metallogels using earth-abundant metal ions such as copper, nickel, iron, zinc, as well as silver and lead salts was evaluated for a few gelators. Using chemiluminescence spectroscopy, the metal–organic xerogels showed enzyme-like properties and enhanced luminescence for luminol. In addition, we also studied the applications of several gels for drug immobilizations and the gels showed sustained release of naproxen from the gel matrices. This robust sugar carbamate-derived gelator system can be used as the scaffold for the design of other functional materials with various types of applications. 
    more » « less
  3. Low molecular weight hydrogels are made of small molecules that aggregate via noncovalent interactions. Here, comprehensive characterization of the physical and chemical properties of hydrogels made from thioglycolipids of the disaccharides lactose and cellobiose with simple alkyl chains is reported. While thiolactoside hydrogels are robust, thiocellobioside gels are metastable, precipitating over time into fibrous crystals that can be entangled to create pseudo-hydrogels. Rheology confirms the viscoelastic solid nature of these hydrogels with storage moduli ranging from 10–600 kPa. Additionally, thiolactoside hydrogels are thixotropic which is a desirable property for many potential applications. Freeze-fracture electron microscopy of xerogels shows layers of stacked sheets that are entangled into networks. These structures are unique compared to the fibers or ribbons typically reported for hydrogels. Differential scanning calorimetry provides gel-to-liquid phase transition temperatures ranging from 30 to 80 °C. Prodan fluorescence spectroscopy allows assignment of phase transitions in the gels and other lyotropic phases of high concentration samples. Phase diagrams are estimated for all hydrogels at 1–10 wt% from 5 to ≥ 80 °C. These hydrogels represent a series of interesting materials with unique properties that make them attractive for numerous potential applications. 
    more » « less
  4. Carbohydrate derived low molecular weight organogelators are interesting compounds with many potential applications. Selective functionalization of the different hydroxyl substituents on d -glucose and d -glucosamine resulted in small molecular gelators. Previously we have found that the C-2 acylated derivatives including esters and carbamates of 4,6- O -benzylidene protected glucose and glucosamine derivatives have shown remarkable applications as molecular gelators. In this research, in order to probe the structural influence of sugar derivatives on molecular self-assembly, we introduced acylation functional groups to the 3-hydroxyl group of 4,6- O -benzylidene acetal protected N -acetyl glucosamine derivatives. A library of fourteen ester derivatives was synthesized and characterized. The ester derivatives typically formed gels in pump oil and aqueous mixtures of dimethyl sulfoxide or ethanol. The resulting gels were characterized using optical microscopy, and rheology, etc. All alkyl ester derivatives were gelators for pump oil. A short chain ester derivative was able to form gels in a few different oils and the corresponding oil water mixtures phase selectively. The compound was also used to trap naproxen sodium and formed a stable co-gel. The controlled release of the drug from the gel to the aqueous phase was analyzed using UV-vis spectroscopy. These results show that the functionalization at the 3-OH position of the N -acetyl glucosamine derivative is a feasible strategy in designing new classes of organogelators. 
    more » « less
  5. Abstract

    In 2014, almost 16 million tons of surfactants were used globally for cleaning and industrial applications. As a result, massive quantities disperse into environmental compartments every day. There is great market interest in developing highly biodegradable, less‐toxic, and renewable alternatives to currently used petroleum‐based surfactants. Glycolipid surfactants, composed of a sugar headgroup and lipid tail, are effective surfactants and emulsifiers with a high tolerance to electrolytes and are easily tailored to address specific needs. The green synthesis and surfactant characteristics of a suite of cellobiosides and melibiosides were recently described. The biodegradability and toxicity of 1°‐alkyl‐O‐cellobiosides, 2°‐alkyl‐O‐cellobiosides, and 1°‐alkyl‐O‐melibiosides with straight‐chain alkyl tails of 8, 10, and 12 are reported in this study. Biodegradability was assessed by quantifying mineralization (CO2evolution). All of the glycosides were inherently biodegradable and most were readily biodegradable according to OECD and US environmental protection agency (EPA) definitions. The Microtox acute toxicity assay showed both chain length and headgroup had significant effects on toxicity, but most of the molecules were practically nontoxic according to EPA definitions with EC50values >100 mg L−1. Cytotoxicity to human lung (H1299) and keratinocyte cell lines (HaCaT) was measured by xCELLigence and MTS assays. Cytotoxicity values were comparable to similar glycosides previously reported. IC50values were determined but in general, exceeded surfactant concentrations that are found in the environment. These data demonstrate the promising nature of these molecules as green alternatives to petrochemical surfactants.

     
    more » « less