skip to main content


Title: Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic
Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella , a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.  more » « less
Award ID(s):
1733564 1840381 1823002
NSF-PAR ID:
10312705
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
41
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rudi, Knut (Ed.)
    ABSTRACT Blooms of many dinoflagellates, including several harmful algal bloom (HAB) species, are seeded and revived through the germination of benthic resting cysts. Temperature is a key determinant of cysts’ germination rate, and temperature–germination rate relationships are therefore fundamental to understanding species’ germling cell production, cyst bed persistence, and resilience to climate warming. This study measured germination by cysts of the HAB dinoflagellate Alexandrium catenella using a growing degree-day ( DD ) approach that accounts for the time and intensity of warming above a critical temperature. Time courses of germination at different temperatures were fit to lognormal cumulative distribution functions for the estimation of the median days to germination. As temperature increased, germination times decreased hyperbolically. DD scaling collapsed variability in germination times between temperatures after cysts were oxygenated. A parallel experiment demonstrated stable temperature–rate relationships in cysts collected during different phases of seasonal temperature cycles in situ over three years. DD scaling of the results from prior A. catenella germination studies showed consistent differences between populations across a wide range of temperatures and suggests selective pressure for different germination rates. The DD model provides an elegant approach to quantify and compare the temperature dependency of germination among populations, between species, and in response to changing environmental conditions. IMPORTANCE Germination by benthic life history stages is the first step of bloom initiation in many, diverse phytoplankton species. This study outlines a growing degree-day ( DD ) approach for comparing the temperature dependence of germination rates measured in different populations. Germination by cysts of Alexandrium catenella , a harmful algal bloom dinoflagellate that causes paralytic shellfish poisoning, is shown to require a defined amount of warming, measured in DD after cysts are aerated. Scaling by DD , the time integral of temperature difference from a critical threshold, enabled direct comparison of rates measured at different temperatures and in different studies. 
    more » « less
  2. Cooper, Lee W (Ed.)
    The toxic diatom genus Pseudo-nitzschia is distributed from equatorial to polar regions and is comprised of >57 species, some capable of producing the neurotoxin domoic acid (DA). In the Pacific Arctic Region spanning the Bering, Chukchi, and Beaufort seas, DA is recognized as an emerging human and ecosystem health threat, yet little is known about the composition and distribution of Pseudo-nitzschia species in these waters. This investigation characterized Pseudo-nitzschia assemblages in samples collected in 2018 during summer (August) and fall (October-November) surveys as part of the Distributed Biological Observatory and Arctic Observing Network, encompassing a broad geographic range (57.8° to 73.0°N, -138.9° to -169.9°W) and spanning temperature (-1.79 to 11.7°C) and salinity (22.9 to 32.9) gradients associated with distinct water masses. Species were identified using a genus-specific Automated Ribosomal Intergenic Spacer Analysis (ARISA). Seventeen amplicons were observed; seven corresponded to temperate, sub-polar, or polar Pseudo-nitzschia species based on parallel sequencing efforts ( P . arctica , P . delicatissima , P . granii , P . obtusa , P . pungens , and two genotypes of P . seriata ), and one represented Fragilariopsis oceanica . During summer, particulate DA (pDA; 4.0 to 130.0 ng L -1 ) was observed in the Bering Strait and Chukchi Sea where P . obtusa was prevalent. In fall, pDA (3.3 to 111.8 ng L -1 ) occurred along the Beaufort Sea shelf coincident with one P . seriata genotype, and south of the Bering Strait in association with the other P . seriata genotype. Taxa were correlated with latitude, longitude, temperature, salinity, pDA, and/or chlorophyll a , and each had a distinct distribution pattern. The observation of DA in association with different species, seasons, geographic regions, and water masses underscores the significant risk of Amnesic Shellfish Poisoning (ASP) and DA-poisoning in Alaska waters. 
    more » « less
  3. Harmful algal blooms (HABs) present an emerging threat to human and ecosystem health in the Alaskan Arctic. Two HAB toxins are of concern in the region: saxitoxins (STXs), a family of compounds produced by the dinoflagellate Alexandrium catenella, and domoic acid (DA), produced by multiple species in the diatom genus Pseudo-nitzschia. These potent neurotoxins cause paralytic and amnesic shellfish poisoning, respectively, in humans, and can accumulate in marine organisms through food web transfer, causing illness and mortality among a suite of wildlife species. With pronounced warming in the Arctic, along with enhanced transport of cells from southern waters, there is significant potential for more frequent and larger HABs of both types. STXs and DA have been detected in the tissues of a range of marine organisms in the region, many of which are important food resources for local residents. The unique nature of the Alaskan Arctic, including difficult logistical access, lack of response infrastructure, and reliance of coastal populations on the noncommercial acquisition of marine resources for nutritional, cultural, and economic well-being, poses urgent and significant challenges as this region warms and the potential for impacts from HABs expands. 
    more » « less
  4. Abstract

    Phytoplankton primary production in the Arctic Ocean has been increasing over the last two decades. In 2019, a record spring bloom occurred in Fram Strait, characterized by a peak in chlorophyll that was reached weeks earlier than in other years and was larger than any previously recorded May bloom. Here, we consider the conditions that led to this event and examine drivers of spring phytoplankton blooms in Fram Strait using in situ, remote sensing, and data assimilation methods. From samples collected during the May 2019 bloom, we observe a direct relationship between sea ice meltwater in the upper water column and chlorophyllapigment concentrations. We place the 2019 spring dynamics in context of the past 20 years, a period marked by rapid change in climatic conditions. Our findings suggest that increased advection of sea ice into the region and warmer surface temperatures led to a rise in meltwater input and stronger near‐surface stratification. Over this time period, we identify large‐scale spatial correlations in Fram Strait between increased chlorophyllaconcentrations and increased freshwater flux from sea ice melt.

     
    more » « less
  5. Nojiri, Hideaki (Ed.)
    ABSTRACT In the oligotrophic oceans, key autotrophs depend on “helper” bacteria to reduce oxidative stress from hydrogen peroxide (H 2 O 2 ) in the extracellular environment. H 2 O 2 is also a ubiquitous stressor in freshwaters, but the effects of H 2 O 2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H 2 O 2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H 2 O 2 concentrations and the microbes responsible for H 2 O 2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H 2 O 2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H 2 O 2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H 2 O 2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H 2 O 2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H 2 O 2 ) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H 2 O 2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H 2 O 2 by associated heterotrophic bacteria, which may impact bloom development. 
    more » « less