Abstract Background The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. Results Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. Conclusions We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            A rotenone organotypic whole hemisphere slice model of mitochondrial abnormalities in the neonatal brain
                        
                    
    
            Abstract Mitochondrial abnormalities underscore a variety of neurologic injuries and diseases and are well-studied in adult populations. Clinical studies identify critical roles of mitochondria in a wide range of developmental brain injuries, but models that capture mitochondrial abnormalities in systems representative of the neonatal brain environment are lacking. Here, we develop an organotypic whole-hemisphere (OWH) brain slice model of mitochondrial dysfunction in the neonatal brain. We extended the utility of complex I inhibitor rotenone (ROT), canonically used in models of adult neurodegenerative diseases, to inflict mitochondrial damage in OWH slices from term-equivalent rats. We quantified whole-slice health over 6 days of exposure for a range of doses represented in ROT literature. We identified 50 nM ROT as a suitable exposure level for OWH slices to inflict injury without compromising viability. At the selected exposure level, we confirmed exposure- and time-dependent mitochondrial responses showing differences in mitochondrial fluorescence and nuclear localization using MitoTracker imaging in live OWH slices and dysregulated mitochondrial markers via RT-qPCR screening. We leveraged the regional structures present in OWH slices to quantify cell density and cell death in the cortex and the midbrain regions, observing higher susceptibilities to damage in the midbrain as a function of exposure and culture time. We supplemented these findings with analysis of microglia and mature neurons showing time-, region-, and exposure-dependent differences in microglial responses. We demonstrated changes in tissue microstructure as a function of region, culture time, and exposure level using live-video epifluorescence microscopy of extracellularly diffusing nanoparticle probes in live OWH slices. Our results highlight severity-, time-, and region-dependent responses and establish a complimentary model system of mitochondrial abnormalities for high-throughput or live-tissue experimental needs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2222074
- PAR ID:
- 10555253
- Publisher / Repository:
- Journal of Biological Engineering
- Date Published:
- Journal Name:
- Journal of Biological Engineering
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1754-1611
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4–24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24–48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.more » « less
- 
            null (Ed.)Abstract Brachial plexus birth injury has a reported incidence of 1 to 4 per 1000 live births. During complicated deliveries, neonatal, maternal, and other birth-related factors can cause over-stretching or avulsion of the neonatal brachial plexus leading to injury. Understanding biomechanical responses of the neonate brachial plexus when subjected to stretch can offer insight into the injury outcomes while guiding the development of preventative maneuvers that can help reduce the occurrence of neonatal brachial plexus injuries. This review article aims to offer a comprehensive overview of existing literature reporting biomechanical responses of the brachial plexus, in both adults and neonates, when subjected to stretch. Despite the discrepancies in the reported biomechanical properties of the brachial plexus, the studies confirm the loading rate and loading direction dependency of the brachial plexus tissue. Future studies, possibly in vivo, that utilize clinically-relevant neonatal large animal models can provide translational failure values of the biomechanical parameters for the neonatal brachial plexus when subjected to stretch.more » « less
- 
            This study investigates the therapeutic effect of astrocyte-derived extracellular vesicles (EVs) in mitigating neurotoxicity-induced transcriptome changes, mitochondrial function, and base excision repair mechanisms in human brain endothelial cells (HBECs). Neurodegenerative disorders are marked by inflammatory processes impacting the blood–brain barrier (BBB) that involve its main components- HBECs and astrocytes. Astrocytes maintain homeostasis through various mechanisms, including EV release. The effect of these EVs on mitigating neurotoxicity in HBECs has not been investigated. This study assesses the impact of astrocyte-derived EVs on global transcriptome changes, cell proliferation, cytotoxicity, oxidative DNA damage, and mitochondrial morphology in HBECs exposed to the neurotoxic reagent Na2Cr2O7. Exposure to Na2Cr2O7 for 5 and 16 h induced oxidative DNA damage, measured by an increase in genomic 8OHdG, while the EVs reduced the accumulation of the adduct. A neurotoxic environment caused a non-statistically significant upregulation of the DNA repair enzyme OGG1 while the addition of astrocyte-derived EVs was associated with the same level of expression. EVs caused increased cell proliferation and reduced cytotoxicity in Na2Cr2O7-treated cells. Mitochondrial dysfunction associated with a reduced copy number and circular morphology induced by neurotoxic exposure was not reversed by astrocyte-derived EVs. High-throughput RNA sequencing revealed that exposure to Na2Cr2O7 suppressed immune response genes. The addition of astrocyte-derived EVs resulted in the dysregulation of long noncoding RNAs impacting genes associated with brain development and angiogenesis. These findings reveal the positive impact of astrocytes-derived EVs in mitigating neurotoxicity and as potential therapeutic avenues for neurodegenerative diseases.more » « less
- 
            ABSTRACT Neurons are almost exclusively cultured in media containing glucose at much higher concentrations than found in the brain. To test whether these “standard” hyperglycemic culture conditions affect neuronal respiration relative to near‐euglycemic conditions, we compared neuronal cultures grown with minimal glial contamination from the hippocampus and cortex of neonatal C57BL/6NCrl mice in standard commercially available media (25 mM Glucose) and in identical media with 5 mM glucose. Neuronal growth in both glucose concentrations proceeded until at least 14 days in vitro, with similar morphology and synaptogenesis. Neurons grown in high glucose were highly dependent on glycolysis as their primary source of ATP, measured using ATP luminescence and cellular respirometry assays. In contrast, neurons grown in 5 mM glucose showed a more balanced dependence on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), greater reserve mitochondrial respiration capacity, and increased mitochondrial population relative to standard media. Our results show that neurons cultured in artificially high glucose‐containing media preferentially use glycolysis, opposite to what is known for neurons in vivo as the primary pathway for ATP maintenance. Changes in gene and protein expression levels corroborate these changes in function and additionally suggest that high glucose culture media increases neuronal inflammation. We suggest using neuronal culture systems in 5 mM glucose to better represent physiologically relevant neuronal respiration.imagemore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
