This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project is to better understand ice-rich permafrost at local, regional, and circumpolar scales. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural environment and next to the infrastructure/disturbed environment at Utqiagvik, Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches.
more »
« less
Arctic Urban Risks and Adaptations (AURA): a co-production framework for addressing multiple changing environmental hazards 2020-2022
This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project, is to better understand the effects climate change imposes on society and the built environment and develop risk assessments for future adaptive planning. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural and disturbed environment in the vicinity of the city of Fairbanks, Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches.
more »
« less
- Award ID(s):
- 1927537
- PAR ID:
- 10555283
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- PERMAFROST FROZEN GROUND SOIL TEMPERATURE WILDFIRE SUPRESSION ALASKA NORTH AMERICA
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project, is to better understand the effects climate change imposes on society and the built environment and develop risk assessments for future adaptive planning. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural and disturbed environment in the vicinity of the city of Fairbanks, Alaska, United States and the city of Whitehorse, Yukon, Canada. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches.more » « less
-
This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project is to better understand ice-rich permafrost at local, regional, and circumpolar scales. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural environment and next to the infrastructure/disturbed environment at Utqiagvik, Point Lay, and Wainwright in Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. Update: Filename nomenclature has been changed from US_PIP_### to US_UTQ_### in order to separate different site location data.more » « less
-
Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth’s past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near‐surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near‐surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near‐surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near‐surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.more » « less
-
Abstract Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.more » « less
An official website of the United States government
