This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project, is to better understand the effects climate change imposes on society and the built environment and develop risk assessments for future adaptive planning. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural and disturbed environment in the vicinity of the city of Fairbanks, Alaska, United States and the city of Whitehorse, Yukon, Canada. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. 
                        more » 
                        « less   
                    
                            
                            Arctic Urban Risks and Adaptations (AURA): a co-production framework for addressing multiple changing environmental hazards 2020-2022
                        
                    
    
            This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project, is to better understand the effects climate change imposes on society and the built environment and develop risk assessments for future adaptive planning. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural and disturbed environment in the vicinity of the city of Fairbanks, Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927537
- PAR ID:
- 10555283
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- PERMAFROST FROZEN GROUND SOIL TEMPERATURE WILDFIRE SUPRESSION ALASKA NORTH AMERICA
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth’s past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near‐surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near‐surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near‐surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near‐surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.more » « less
- 
            Abstract Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.more » « less
- 
            Abstract The presence of ground ice in Arctic soils exerts a major effect on permafrost hydrology and ecology, and factors prominently into geomorphic landform development. As most ground ice has accumulated in near-surface permafrost, it is sensitive to variations in atmospheric conditions. Typical and regionally widespread permafrost landforms such as pingos, ice-wedge polygons, and rock glaciers are closely tied to ground ice. However, under ongoing climate change, suitable environmental spaces for preserving landforms associated with ice-rich permafrost may be rapidly disappearing. We deploy a statistical ensemble approach to model, for the first time, the current and potential future environmental conditions of three typical permafrost landforms, pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere. We show that by midcentury, the landforms are projected to lose more than one-fifth of their suitable environments under a moderate climate scenario (RCP4.5) and on average around one-third under a very high baseline emission scenario (RCP8.5), even when projected new suitable areas for occurrence are considered. By 2061–2080, on average more than 50% of the recent suitable conditions can be lost (RCP8.5). In the case of pingos and ice-wedge polygons, geographical changes are mainly attributed to alterations in thawing-season precipitation and air temperatures. Rock glaciers show air temperature-induced regional changes in suitable conditions strongly constrained by topography and soil properties. The predicted losses could have important implications for Arctic hydrology, geo- and biodiversity, and to the global climate system through changes in biogeochemical cycles governed by the geomorphology of permafrost landscapes. Moreover, our projections provide insights into the circumpolar distribution of various ground ice types and help inventory permafrost landforms in unmapped regions.more » « less
- 
            Ground ice content of the Arctic soils largely dictates the effects of climate change-induced permafrost degradation and top ground destabilization. The current circumarctic information on ground ice content is overly coarse for many key applications, including assessments of hazards to Arctic infrastructure, while detailed data are restricted to very few regions. This study aims to address these gaps by presenting spatially comprehensive data on pore and segregated ground ice content across the Northern Hemisphere permafrost region at a 1-km resolution. First, ground ice content datasets (n=437 and 380 1-km grid cells for volumetric and gravimetric ice content, respectively) were compiled from field observations over the permafrost region. Spatial estimates of ground ice content in the near-surface permafrost north of the 30th parallel north were then produced by relating observed ground ice content to physically relevant environmental data layers of climate, soil, topography, and vegetation properties using a statistical modelling framework. The produced data show that ground ice content varies substantially across the permafrost region. The highest ice contents are found on peat-dominated Arctic lowlands and along major river basins. Low ice contents are associated with mountainous areas and many sporadic and isolated permafrost regions. The modelling yields relatively small prediction errors (a mean absolute error of 13.6 % volumetric ice content) over evaluation data and broadly congruent spatial distributions with earlier regional-scale studies. The presented data allow the consideration of ground ice content in various geomorphological, ecological, and environmental impact assessment applications at a scale that is more relevant than previous products. The produced ground ice data are available in the supplement for this study and at Zenodo https://doi.org/10.5281/zenodo.7009875 (Karjalainen et al., 2022).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
