skip to main content


Title: Modeling Present and Future Permafrost Distribution at the Seward Peninsula, Alaska
Abstract

Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.

 
more » « less
Award ID(s):
1832238
NSF-PAR ID:
10456686
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
125
Issue:
8
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Great Lakes’ atmosphere predominantly signposts signatures of climate change in terms of an elongated summer, depletion of ice‐cover, and up‐surging lake surface temperature and air temperature, which demands an in‐depth comprehension of future lake circulation dynamics. After satisfactory validations for the lake meteorology and hydrodynamics during 2010–2019, historical and future predictions based on a downscaled climate model for the Great Lakes region under Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios are used to drive the Finite‐Volume Community Ocean Model applied to Lake Michigan during the ice‐free months of 2010–2069. Substantial rises in lake surface current speed during May–June and September–October are connected to the rising wind speed and air temperature in the lake domain. Under the RCP 4.5 scenario, the study expects a 6.5% per decade relative increase in surface current speed, with a rise of 1.3% in the coastal circulation (within 50‐m depth from the coast) until 2050. Surface circulation strength can reach the highest rise (13%) during 2030–2039 and a slight drop (−1%) during 2050–2069. During May–December, only a 0.3% variation is predicted in current magnitudes under RCP 4.5 and 8.5 scenarios. The projections anticipate the occurrence of a stronger, wider, and northward shifting lake gyre with changing lake meteorology. Further analysis indicates that the reduced thermal gradient over the lake surface tends to resist sharp modulations in winds and lake dynamics in the successive decades.

     
    more » « less
  2. Permafrost is ground that remains frozen year-round due to a cold climate; the active layer is the ground above the permafrost that thaws and re-freezes each year. Nearly 40 million acres of National Park Service (NPS) land in Alaska, similar to the size of Florida, lie within the zone of continuous or discontinuous permafrost. Permafrost can be classified as continuous (>90% of land area underlain by permafrost), discontinuous (90%-50%), sporadic (50%-10%), or isolated (<10%; Ferrians 1965). Permafrost is most vulnerable to climatic warming when its temperature is within a few degrees of thawing. Large-scale permafrost thawing would lead to a major reconfiguration of the landscape through the development of thermokarst (irregular topography resulting from ground ice melting). 
    more » « less
  3. Abstract

    Snowfall and snow season length across Alaska control the surface hydrology and underlying soil properties and also influence near‐surface air temperature by changing the energy balance. Current projections of warming suggest that considerable change will occur to key snow parameters, possibly contributing to extensive infrastructure damage from thawing permafrost, an increased frequency of rain‐on‐snow events and reduced soil recharge in the spring due to shallow end‐of‐winter snowpack. This study investigates projected changes to mean annual snowfall, dates of snow onset and snowmelt and extreme snowfall for Alaska, using dynamically downscaled reanalysis and climate model simulations. These include the ERA‐Interim reanalysis from 1981 to 2010, and two Coupled Model Intercomparison Project Phase 5 models: Community Climate System Model version 4 (CCSM4) and Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL‐CM3) from 1981 to 2100. The analysis is presented in 30‐year periods (i.e., 1981–2010, 2011–2040, 2041–2070 and 2071–2100) with the future scenarios from Representative Concentration Pathway 8.5. Late‐century projections of average annual snowfall at low elevations (0–1,000 m) show decreases of 41.3 and 40.6% for CCSM4 and GFDL‐CM3, respectively. At high elevations (1,000–2,000 m), the reductions are smaller at 13.5 and 14.2%, respectively. End‐of‐winter snow‐water equivalent displays reductions at all elevations in the future periods. Snow season length is shortened due to later snow onset and earlier snowmelt; many locations in southwest Alaska no longer experience continuous winter snowpack by the late‐century period. Maximum 2‐day snowfall amounts are projected to decrease near Anchorage and Nome, while Fairbanks and Utqiaġvik (Barrow) show no significant trend.

     
    more » « less
  4. Abstract

    Maximum stand density index (SDIMAX) represents the carrying capacity of a forest stand based on the relationship between the number of trees and their size. Plot‐level inventory data provided through a collaborative network of federal, state, and private forest management groups were utilized to develop SDIMAXmodels for important Pacific Northwest conifers of western Washington and Oregon, USA. The influence of site‐specific climatic and environmental variables was explored within an ensemble learning model. Future climate projections based on global circulation models under different representative CO2concentration pathways (RCP 4.5 and RCP 8.5) and timeframes (2050s and 2080s) were utilized in a space‐for‐time substitution to understand potential shifts in modeled SDIMAX. A majority of the region showed decreases in carrying capacity under future climate conditions. Modeled mean SDIMAXdecreased 5.4% and 11.4% for Douglas‐fir (Pseudotsuga menziesii(Mirb.) Franco) dominated forests and decreased 6.6% and 8.9% for western hemlock (Tsuga heterophylla(Raf.) Sarg.) and Pacific silver fir (Abies amabilis), dominated forests under the RCP 4.5 in the 2050s and RCP 8.5 in the 2080s, respectively. Projected future conditions often fall outside the range of any contemporary climate profile, resulting in what may be referred to as extramural conditions. Within the study region, 45% and 46% of climate variables included in the final model were extramural for the Douglas‐fir and hemlock models, respectively, under RCP 8.5 in the 2080s. Although extrapolating beyond the range of input data is not appropriate and many unknowns remain regarding future climate projections, these results allow for general interpretations of the direction and magnitude of potential shifts in forest carrying capacity.

     
    more » « less
  5. Abstract

    Northern circumpolar permafrost thaw affects global carbon cycling, as large amounts of stored soil carbon becomes accessible to microbial breakdown under a warming climate. The magnitude of carbon release is linked to the extent of permafrost thaw, which is locally variable and controlled by soil thermodynamics. Soil thermodynamic properties, such as thermal diffusivity, govern the reactivity of the soil‐atmosphere thermal gradient, and are controlled by soil composition and drainage. In order to project permafrost thaw for an Alaskan tundra experimental site, we used seven years of site data to calibrate a soil thermodynamic model using a data assimilation technique. The model reproduced seasonal and interannual temperature dynamics for shallow (5–40 cm) and deep soil layers (2–4 m), and simulations of seasonal thaw depth closely matched observed data. The model was then used to project permafrost thaw at the site to the year 2100 using climate forcing data for three future climate scenarios (RCP 4.5, 6.0, and 8.5). Minimal permafrost thawing occurred until mean annual air temperatures rose above the freezing point, after which we measured over a 1 m increase in thaw depth for every 1 °C rise in mean annual air temperature. Under no projected warming scenario was permafrost remaining in the upper 3 m of soil by 2100. We demonstrated an effective data assimilation method that optimizes parameterization of a soil thermodynamic model. The sensitivity of local permafrost to climate warming illustrates the vulnerability of sub‐Arctic tundra ecosystems to significant and rapid soil thawing.

     
    more » « less