skip to main content


Title: Recent Freshening of the Subpolar North Atlantic Increased the Transport of Lighter Waters of the Irminger Current From 2014 to 2022
Abstract

Starting in 2012, the eastern subpolar North Atlantic experienced the strongest surface freshening in the past 120 years. It is yet unknown whether this salinity anomaly propagated downward into the water column and affected the properties of the boundary currents of the subpolar gyre, which could slow down the overturning. Here, we investigate the imprint of this salinity anomaly on the warm and saline Irminger Current (IC) in the decade thereafter. Using daily mooring data from the IC covering the period 2014–2022 combined with hydrographic sections across the adjacent basins from 1990, the evolving signal of the salinity anomaly over the water column and its imprint on the transport variability is studied. We find that due to the salinity anomaly, the northward freshwater transport of the IC increased by 10 mSv in summer 2016 compared to summer 2015. In 2018, the salinity anomaly covered the water column down to 1,500 m depth. Hydrographic sections across the basin showed that this recent freshening signal spread across the Irminger Sea. Overall, the freshwater transport of the IC increased by a factor of three between 2014–2015 and 2021–2022. The associated density decrease over the upper 1,500 m of the water column resulted in an increase in the northward transport of waters lighter thanσ0 = 27.55 kg m−3from 1.7 to 4.2 Sv. This change in northward IC transport by density class may impact the characteristics of the overturning in the Northeastern Atlantic, its strength and the density at which it peaks.

 
more » « less
Award ID(s):
1948198 2338450 1948482
PAR ID:
10555298
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
11
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.

     
    more » « less
  2. To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin. 
    more » « less
  3. To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin. 
    more » « less
  4. Abstract

    In a transient warming scenario, the North Atlantic is influenced by a complex pattern of surface buoyancy flux changes that ultimately weaken the Atlantic meridional overturning circulation (AMOC). Here we study the AMOC response in the CMIP5 experiment, using the near-geostrophic balance of the AMOC on interannual time scales to identify the role of temperature and salinity changes in altering the circulation. The thermal wind relationship is used to quantify changes in the zonal density gradients that control the strength of the flow. At 40°N, where the overturning cell is at its strongest, weakening of the AMOC is largely driven by warming between 1000- and 2000-m depth along the western margin. Despite significant subpolar surface freshening, salinity changes are small in the deep branch of the circulation. This is likely due to the influence of anomalously salty water in the subpolar intermediate layers, which is carried northward from the subtropics in the upper limb of the AMOC. In the upper 1000 m at 40°N, salty anomalies due to increased evaporation largely cancel the buoyancy increase due to warming. Therefore, in CMIP5, temperature dynamics are responsible for AMOC weakening, while freshwater forcing instead acts to strengthen the circulation in the net. These results indicate that past modeling studies of AMOC weakening, which rely on freshwater hosing in the subpolar gyre, may not be directly applicable to a more complex warming scenario.

     
    more » « less
  5. Abstract

    The Deep Western Boundary Current (DWBC) – the primary component of the lower limb of the Atlantic Meridional Overturning Circulation – flows along the eastern flank of Greenland from a combination of Denmark Strait Overflow Water and Iceland Scotland Overflow Water. The Overturning in the Subpolar North Atlantic Program (OSNAP) has continuously measured the DWBC since 2014 using current meters, temperature/salinity sensors, and acoustic doppler current profilers. This mooring array located near Cape Farewell also incorporates data from the Ocean Observatories Initiative’s Global Irminger Sea Array to create the longest continuous observations of the DWBC closest to where Iceland Scotland Overflow Water and Denmark Strait Overflow water first merge. This study reveals that the DWBC has decreased by 26% over the first six years of OSNAP observations primarily due to a thinning of the traditionally defined DWBC layer (σθ > 27.8 kg m-3) due to a known freshening signal moving through the subpolar region. Despite this decrease, the Atlantic Meridional Overturning Circulation as calculated by OSNAP has remained relatively steady over the same period. Ultimately, the reason for this difference is due to the methods used to define these two circulations. Finding such notably different trends for two seemingly dependent circulations raises the question of how to best define these transports.

     
    more » « less