Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Decadal thermohaline anomalies carried northward by the North Atlantic Current are an important source of predictability in the North Atlantic region. Here, we investigate whether these thermohaline anomalies influence surface-forced water mass transformation (SFWMT) in the eastern subpolar gyre using the reanalyses EN4.2.2 for the ocean and the ERA5 for the atmosphere. In addition, we follow the propagation of thermohaline anomalies along two paths: in the subpolar North Atlantic and the Norwegian Sea. We use observation-based datasets (HadISST, EN4.2.2, and Ishii) between 1947 and 2021 and apply complex empirical orthogonal functions. Our results show that when a warm anomaly enters the eastern subpolar gyre, more SFWMT occurs in light-density classes (27.0–27.2 kg m−3). In contrast, when a cold anomaly enters the eastern subpolar gyre, more SFWMT occurs in denser classes (27.4–27.5 kg m−3). Following the thermohaline anomalies in both paths, we find alternating warm–salty and cold–fresh subsurface anomalies, repeating throughout the 74-yr-long record with four warm–salty and cold–fresh periods after the 1950s. The cold–fresh anomaly periods happen simultaneously with the Great Salinity Anomaly events. Moreover, the propagation of thermohaline anomalies is faster in the subpolar North Atlantic (SPNA) than in the Norwegian Sea, especially for temperature anomalies. These findings might have implications for our understanding of the decadal variability of the lower limb of the Atlantic meridional overturning circulation and predictability in the North Atlantic region. Significance StatementAnomalously warm–salty or cold–fresh water, carried by the North Atlantic Current toward the Arctic, is a source of climate predictability. In this study, we investigate 1) how these ocean anomalies influence the transformation of water masses in the eastern subpolar gyre and 2) their subsequent propagation poleward and northwestward. The key findings reveal that anomalously warm waters entering the eastern subpolar gyre lead to increased transformation in lighter water masses, while cold anomalies affect denser water masses. These anomalies propagate more than 2 times faster toward the Greenland coast (northwestward) than toward the Arctic (poleward). Our findings contribute to enhancing the understanding of decadal predictability in the northern North Atlantic, including its influence on the Atlantic meridional overturning circulation.more » « less
-
Abstract Starting in 2012, the eastern subpolar North Atlantic experienced the strongest surface freshening in the past 120 years. It is yet unknown whether this salinity anomaly propagated downward into the water column and affected the properties of the boundary currents of the subpolar gyre, which could slow down the overturning. Here, we investigate the imprint of this salinity anomaly on the warm and saline Irminger Current (IC) in the decade thereafter. Using daily mooring data from the IC covering the period 2014–2022 combined with hydrographic sections across the adjacent basins from 1990, the evolving signal of the salinity anomaly over the water column and its imprint on the transport variability is studied. We find that due to the salinity anomaly, the northward freshwater transport of the IC increased by 10 mSv in summer 2016 compared to summer 2015. In 2018, the salinity anomaly covered the water column down to 1,500 m depth. Hydrographic sections across the basin showed that this recent freshening signal spread across the Irminger Sea. Overall, the freshwater transport of the IC increased by a factor of three between 2014–2015 and 2021–2022. The associated density decrease over the upper 1,500 m of the water column resulted in an increase in the northward transport of waters lighter thanσ0 = 27.55 kg m−3from 1.7 to 4.2 Sv. This change in northward IC transport by density class may impact the characteristics of the overturning in the Northeastern Atlantic, its strength and the density at which it peaks.more » « less
-
Abstract Watermass transformation in the Irminger Sea, a key region for the Atlantic Meridional Overturning Circulation, is influenced by atmospheric and oceanic variability. Strong wintertime atmospheric forcing in 2015 resulted in enhanced convection and the densification of the Irminger Sea. Deep convection persisted until 2018, even though winters following 2015 were mild. We show that this behavior can be attributed to an initially slow convergence of buoyancy, followed by more rapid convergence of buoyancy. This two‐stage recovery, in turn, is consistent with restratification driven by baroclinic instability of the Irminger Current (IC), that flows around the basin. The initial, slow restratification resulted from the weak horizontal density gradients created by the widespread 2015 atmospheric heat loss. Faster restratification occurred once the IC recovered. This mechanism explains the delayed recovery of the Irminger Sea following a single extreme winter and has implications for the ventilation and overturning that occurs in the basin.more » « less
-
Abstract The Greenland Ice Sheet is losing mass at an accelerating pace, increasing its contribution to the freshwater input into the Nordic Seas and the subpolar North Atlantic. It has been proposed that this increased freshwater may impact the Atlantic Meridional Overturning Circulation by affecting the stratification of the convective regions of the North Atlantic and Nordic Seas. Observations of the transformation and pathways of meltwater from the Greenland Ice Sheet on the continental shelf and in the gyre interior, however, are lacking. Here, we report on noble gas derived observations of submarine meltwater distribution and transports in the East and West Greenland Current Systems of southern Greenland and around Cape Farewell. In southeast Greenland, submarine meltwater is concentrated in the East Greenland Coastal Current core with maximum concentrations of 0.8%, thus significantly diluted relative to fjord observations. It is found in water with density ranges from 1,024 to 1027.2 kg m−3and salinity from 30.6 to 34, which extends as deep as 250 m and as far offshore as 60 km on the Greenland shelf. Submarine meltwater transport on the shelf averages 5.0 ± 1.6 mSv which, if representative of the mean annual transport, represents 60%–80% of the total solid ice discharge from East Greenland and suggests relatively little offshore export of meltwater east and upstream of Cape Farewell. The location of the meltwater transport maximum shifts toward the shelfbreak around Cape Farewell, positioning the meltwater for offshore flux in regions of known cross‐shelf exchange along the West Greenland coast.more » « less
-
Abstract Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.more » « less
-
Abstract Rapid ice loss from the Greenland ice sheet since 1992 is due in equal parts to increased surface melting and accelerated ice flow. The latter is conventionally attributed to ocean warming, which has enhanced submarine melting of the fronts of Greenland’s marine-terminating glaciers. Yet, through the release of ice sheet surface meltwater into the ocean, which excites near-glacier ocean circulation and in turn the transfer of heat from ocean to ice, a warming atmosphere can increase submarine melting even in the absence of ocean warming. The relative importance of atmospheric and oceanic warming in driving increased submarine melting has, however, not been quantified. Here, we reconstruct the rate of submarine melting at Greenland’s marine-terminating glaciers from 1979 to 2018 and estimate the resulting dynamic mass loss. We show that in south Greenland, variability in submarine melting was indeed governed by the ocean, but, in contrast, the atmosphere dominated in the northwest. At the ice sheet scale, the atmosphere plays a first-order role in controlling submarine melting and the subsequent dynamic mass loss. Our results challenge the attribution of dynamic mass loss to ocean warming alone and show that a warming atmosphere has amplified the impact of the ocean on the Greenland ice sheet.more » « less
-
Abstract The subpolar North Atlantic is a site of significant carbon dioxide, oxygen, and heat exchange with the atmosphere. This exchange, which regulates transient climate change and prevents large‐scale hypoxia throughout the North Atlantic, is thought to be mediated by vertical mixing in the ocean's surface mixed layer. Here we present observational evidence that waters deeper than the conventionally defined mixed layer are affected directly by atmospheric forcing in this region. When northerly winds blow along the Irminger Sea's western boundary current, the Ekman response pushes denser water over lighter water, potentially triggering slantwise convection. We estimate that this down‐front wind forcing is four times stronger than air–sea heat flux buoyancy forcing and can mix waters to several times the conventionally defined mixed layer depth. Slantwise convection is not included in most large‐scale ocean models, which likely limits their ability to accurately represent subpolar water mass transformations and deep ocean ventilation.more » « less
-
Abstract The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.more » « less
-
Abstract Hudson Strait is seasonally ice covered and is the only part of the Canadian Arctic where winter shipping takes place. Yet, very little is known about the thickness and dynamics of this ice pack. During winter operations, icebreakers often face besetting events, which can slow or immobilize vessels for up to a few days. Using in situ observations of ice draft and drift collected by moored sonars at two sites in Hudson Strait from 2005 to 2009, we provide the first detailed analysis of sea ice dynamics within Hudson Strait and provide insights into the processes that dictate ice thickness and internal pressure along this unique winter shipping corridor. Prevailing northwesterly winds drive south‐southeastward ice motion within the Strait, maintaining polynyas along Baffin Island on the north side of the Strait, and compressing the ice pack against Nunavik on the southern side. As a result, ice on the northern side remains young and thin throughout winter ( = 1.25 m), whereas ice on the southern side is older, heavily deformed and ∼60% thicker by March ( = 2.01 m). Intermittent reversals to southeasterly winds decompress the ice pack on the southern side, increasing the presence of leads and easing navigation through the ice pack to the port in Deception Bay. The spatial variability in sea ice thickness elucidated by the moorings is corroborated at the regional scale using satellite observations from ICESat‐2 during winter 2019, 2020, and 2021, and complimented by high‐resolution fields of sea ice motion during winter 2021.more » « less
-
Abstract Freshwater from the Greenland Ice Sheet is routed to the ocean through narrow fjords along the coastline where it impacts ecosystems both within the fjord and on the continental shelf, regional circulation, and potentially the global overturning circulation. However, the timing of freshwater export is sensitive to the residence time of waters within glacial fjords. Here, we present evidence of seasonal freshwater storage in a tidewater glacial fjord using hydrographic and velocity data collected over 10 days during the summers of 2012 and 2013 in Saqqarleq (SQ), a midsize fjord in west Greenland. The data revealed a rapid freshening trend of −0.05 ± 0.01 and −0.04 ± 0.01 g kg −1 day −1 in 2012 and 2013, respectively, within the intermediate layer of the fjord (15–100 m) less than 2.5 km from the glacier terminus. The freshening trend is driven, in part, by the downward mixing of outflowing glacially modified water near the surface and increasingly stratifies the fjord from the surface downward over the summer melt season. We construct a box model that recreates the first-order dynamics of the fjord and describes freshwater storage as a balance between friction and density-driven exchange outside the fjord. The model can be used to diagnose the time scale for this balance to be reached, and for SQ we find a month lag between subglacial meltwater discharge and net freshwater export. These results indicate a fjord-induced delay in freshwater export to the ocean that should be represented in large-scale models seeking to understand the impact of Greenland freshwater on the regional climate system.more » « less
An official website of the United States government
