skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Noise schemas aid hearing in noise
Human hearing is robust to noise, but the basis of this robustness is poorly understood. Several lines of evidence are consistent with the idea that the auditory system adapts to sound components that are stable over time, potentially achieving noise robustness by suppressing noise-like signals. Yet background noise often provides behaviorally relevant information about the environment and thus seems unlikely to be completely discarded by the auditory system. Motivated by this observation, we explored whether noise robustness might instead be mediated by internal models of noise structure that could facilitate the separation of background noise from other sounds. We found that detection, recognition, and localization in real-world background noise were better for foreground sounds positioned later in a noise excerpt, with performance improving over the initial second of exposure to a noise. These results are consistent with both adaptation-based and model-based accounts (adaptation increases over time and online noise estimation should benefit from acquiring more samples). However, performance was also robust to interruptions in the background noise and was enhanced for intermittently recurring backgrounds, neither of which would be expected from known forms of adaptation. Additionally, the performance benefit observed for foreground sounds occurring later within a noise excerpt was reduced for recurring noises, suggesting that a noise representation is built up during exposure to a new background noise and then maintained in memory. These findings suggest that noise robustness is supported by internal models—“noise schemas”—that are rapidly estimated, stored over time, and used to estimate other concurrent sounds.  more » « less
Award ID(s):
2240406
PAR ID:
10555303
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
47
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speech sounds exist in a complex acoustic–phonetic space, and listeners vary in the extent to which they are sensitive to variability within the speech sound category (“gradience”) and the degree to which they show stable, consistent responses to phonetic stimuli. Here, we investigate the hypothesis that individual differences in the perception of the sound categories of one's language may aid speech-in-noise performance across the adult lifespan. Declines in speech-in-noise performance are well documented in healthy aging, and are, unsurprisingly, associated with differences in hearing ability. Nonetheless, hearing status and age are incomplete predictors of speech-in-noise performance, and long-standing research suggests that this ability draws on more complex cognitive and perceptual factors. In this study, a group of adults ranging in age from 18 to 67 years performed online assessments designed to measure phonetic category sensitivity, questionnaires querying recent noise exposure history and demographic factors, and crucially, a test of speech-in-noise perception. Results show that individual differences in the perception of two consonant contrasts significantly predict speech-in-noise performance, even after accounting for age and recent noise exposure history. This finding supports the hypothesis that individual differences in sensitivity to phonetic categories mediates speech perception in challenging listening situations. 
    more » « less
  2. Little is known about how populations of neurons within cortical circuits encode sensory stimuli in the presence of competing stimuli at other spatial locations. Here, we investigate this problem in auditory cortex using a recently proposed information-theoretic approach. We find a small subset of neurons nearly maximizes information about target sounds in the presence of competing maskers, approaching information levels for isolated stimuli, and provides a noise-robust code for sounds in a complex auditory scene. 
    more » « less
  3. The open sourcing of large amounts of image data promotes the development of deep learning techniques. Along with this comes the privacy risk of these image datasets being exploited by unauthorized third parties to train deep learning models for commercial or illegal purposes. To avoid the abuse of data, a poisoning-based technique, unlearnable example, has been proposed to significantly degrade the generalization performance of models by adding imperceptible noise to the data. To further enhance its robustness against adversarial training, existing works leverage iterative adversarial training on both the defensive noise and the surrogate model. However, it still remains unknown whether the robustness of unlearnable examples primarily comes from the effect of enhancement in the surrogate model or the defensive noise. Observing that simply removing the adversarial perturbation on the training process of the defensive noise can improve the performance of robust unlearnable examples, we identify that solely the surrogate model's robustness contributes to the performance. Furthermore, we found a negative correlation exists between the robustness of defensive noise and the protection performance, indicating defensive noise's instability issue. Motivated by this, to further boost the robust unlearnable example, we introduce Stable Error-Minimizing noise (SEM), which trains the defensive noise against random perturbation instead of the time-consuming adversarial perturbation to improve the stability of defensive noise. Through comprehensive experiments, we demonstrate that SEM achieves a new state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet Subset regarding both effectiveness and efficiency. 
    more » « less
  4. Abstract Cortical representations supporting many cognitive abilities emerge from underlying circuits comprised of several different cell types. However, cell type-specific contributions to rate and timing-based cortical coding are not well-understood. Here, we investigated the role of parvalbumin neurons in cortical complex scene analysis. Many complex scenes contain sensory stimuli which are highly dynamic in time and compete with stimuli at other spatial locations. Parvalbumin neurons play a fundamental role in balancing excitation and inhibition in cortex and sculpting cortical temporal dynamics; yet their specific role in encoding complex scenes via timing-based coding, and the robustness of temporal representations to spatial competition, has not been investigated. Here, we address these questions in auditory cortex of mice using a cocktail party-like paradigm, integrating electrophysiology, optogenetic manipulations, and a family of spike-distance metrics, to dissect parvalbumin neurons’ contributions towards rate and timing-based coding. We find that suppressing parvalbumin neurons degrades cortical discrimination of dynamic sounds in a cocktail party-like setting via changes in rapid temporal modulations in rate and spike timing, and over a wide range of time-scales. Our findings suggest that parvalbumin neurons play a critical role in enhancing cortical temporal coding and reducing cortical noise, thereby improving representations of dynamic stimuli in complex scenes. 
    more » « less
  5. Speech recognition in noisy environments can be challenging and requires listeners to accurately segregate a target speaker from irrelevant background noise. Stochastic figure-ground (SFG) tasks in which temporally coherent inharmonic pure-tones must be identified from a background have been used to probe the non-linguistic auditory stream segregation processes important for speech-in-noise processing. However, little is known about the relationship between performance on SFG tasks and speech-in-noise tasks nor the individual differences that may modulate such relationships. In this study, 37 younger normal-hearing adults performed an SFG task with target figure chords consisting of four, six, eight, or ten temporally coherent tones amongst a background of randomly varying tones. Stimuli were designed to be spectrally and temporally flat. An increased number of temporally coherent tones resulted in higher accuracy and faster reaction times (RTs). For ten target tones, faster RTs were associated with better scores on the Quick Speech-in-Noise task. Individual differences in working memory capacity and self-reported musicianship further modulated these relationships. Overall, results demonstrate that the SFG task could serve as an assessment of auditory stream segregation accuracy and RT that is sensitive to individual differences in cognitive and auditory abilities, even among younger normal-hearing adults. 
    more » « less