skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Small, but mitey: investigating the molecular genetic basis for mite domatia development and intraspecific variation in Vitis riparia using transcriptomics
Summary Here, we investigated the molecular genetic basis of mite domatia, structures on the underside of leaves that house mutualistic mites, and intraspecific variation in domatia size inVitis riparia(riverbank grape).Domatia and leaf traits were measured, and the transcriptomes of mite domatia from two genotypes ofV. ripariawith distinct domatia sizes were sequenced to investigate the molecular genetic pathways that regulate domatia development and intraspecific variation in domatia traits.Key trichome regulators as well as auxin and jasmonic acid are involved in domatia development. Genes involved in cell wall biosynthesis, biotic interactions, and molecule transport/metabolism are upregulated in domatia, consistent with their role in domatia development and function.This work is one of the first to date that provides insight into the molecular genetic bases of mite domatia. We identified key genetic pathways involved in domatia development and function, and uncovered unexpected pathways that provide an avenue for future investigation. We also found that intraspecific variation in domatia size inV. ripariaseems to be driven by differences in overall leaf development between genotypes.  more » « less
Award ID(s):
2301659
PAR ID:
10555306
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
245
Issue:
1
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 215-231
Size(s):
p. 215-231
Sponsoring Org:
National Science Foundation
More Like this
  1. Henn, J (Ed.)
    Abstract Intraspecific trait variation can influence plant performance in different environments and may thereby determine the ability of individual plants to respond to climate change. However, our understanding of its patterns and environmental drivers across different spatial scales is incomplete, especially in understudied regions like the Arctic.To fill this knowledge gap, we examined above‐ground and below‐ground traits from three shrub taxa expanding across the tundra biome and evaluated their relationships with multiple microenvironmental and macroclimatic factors. The traits reflected plant size and structure (plant height, leaf area and root to shoot ratio), leaf economics (specific leaf area, nitrogen content), and root economics and collaboration with mycorrhizal fungi (specific root length, root tissue density, nitrogen content, and ectomycorrhizal colonisation intensity). We also measured leaf and root δ15N and leaf δ13C to characterise nitrogen source and acquisition pathways and plant water stress. Traits were measured in replicated plots (N = 135) varying in soil microclimate, thaw depth and organic layer thickness established across five sites spanning a macroclimate gradient in northern Alaska. This hierarchical design allowed us to disentangle the independent and combined effects of fine‐scale and broad‐scale factors on intraspecific trait variation.We found substantial intraspecific variation at fine spatial scales for most traits and less variation along the macroclimate gradient and between shrub taxa. Consistent with these patterns, microenvironmental factors, mainly soil moisture and thaw depth, interacted with macroclimate, mainly climatic water deficit, to structure size‐structural and leaf trait variation. In contrast, most root traits responded additively to thaw depth and macroclimate.Synthesis. Our results demonstrate that above‐ground and below‐ground tundra shrub traits respond differently to microenvironmental and macroclimatic variation. These differing responses contribute to substantial trait variation at fine spatial scales and may decouple above‐ground and below‐ground trait responses to climate change. 
    more » « less
  2. Abstract Understanding how vegetation responds to drought is fundamental for understanding the broader implications of climate change on foundation tree species that support high biodiversity. Leveraging remote sensing technology provides a unique vantage point to explore these responses across and within species.We investigated interspecific drought responses of twoPopulusspecies (P.fremontii,P.angustifolia) and their naturally occurring hybrids using leaf‐level visible through shortwave infrared (VSWIR; 400–2500 nm) reflectance. AsF1hybrids backcross with either species, resulting in a range of backcross genotypes, we heretofore refer to the two species and their hybrids collectively as ‘cross types’. We additionally explored intraspecific variation inP. fremontiidrought response at the leaf and canopy levels using reflectance data and thermal unmanned aerial vehicle (UAV) imagery. We employed several analyses to assess genotype‐by‐environment (G × E) interactions concerning drought, including principal component analysis, support vector machine and spectral similarity index.Five key findings emerged: (1) Spectra of all three cross types shifted significantly in response to drought. The magnitude of these reaction norms can be ranked from hybrids>P. fremontii>P. angustifolia, suggesting differential variation in response to drought; (2) Spectral space among cross types constricted under drought, indicating spectral—and phenotypic—convergence; (3) Experimentally, populations ofP. fremontiifrom cool regions had different responses to drought than populations from warm regions, with source population mean annual temperature driving the magnitude and direction of change in VSWIR reflectance. (4) UAV thermal imagery revealed that watered, warm‐adapted populations maintained lower leaf temperatures and retained more leaves than cool‐adapted populations, but differences in leaf retention decreased when droughted. (5) These findings are consistent with patterns of local adaptation to drought and temperature stress, demonstrating the ability of leaf spectra to detect ecological and evolutionary responses to drought as a function of adaptation to different environments.Synthesis.Leaf‐level spectroscopy and canopy‐level UAV thermal data captured inter‐ and intraspecific responses to water stress in cottonwoods, which are widely distributed in arid environments. This study demonstrates the potential of remote sensing to monitor and predict the impacts of drought on scales varying from leaves to landscapes. 
    more » « less
  3. Understanding the genetic basis of leaf size and shape is essential for evaluating and selecting for plant adaptability and performance in variable and shifting climatic conditions. This study maps the leaf size and shape phenotypic variation as influenced by the genetic architecture of a rootstock population and its conferred influence on these traits in a common scion. The influence of the root system genotype was studied using two different presentations of an F1 rootstock population (F1_Vruprip;V. rupestrisScheele ‘B38’ (USDA PI#588160) XV. ripariaMichx. ‘HP1’ (USDA PI#588271)); 1) the F1_Vruprip grapevine progeny on their own roots and 2) a F1_Vruprip cohort that was grafted with the common scion scion 'Marquette'. Three leaf positions (apical, middle, and basal) were sampled in both presentations at two timepoints in two consecutive growing seasons. A twenty-one-point leaf morphological landmark coordinate analysis was conducted, and ten leaf size and six derived shape phenotypes were used for QTL mapping. Genetic analysis identified five distinct hotspots associated with size-related leaf area attributes in own-rooted and grafted vines. The identification of multiple leaf-growth-associated pathways in these hotspot regions strengthened the correlation between genetics and phenotypic traits. Shape related QTL accounted for 12-48% of the shape phenotypic variation but did not cluster as QTL hotspots. Three QTL hotspots captured the genetic influence of the rootstock conferred onto the scion leaf area traits. The results showed that the leaf position and the rootstock population’s genetic composition significantly impacted leaf morphological attributes and that there was a measurable rootstock genotype influence conferred on the grafted scion leaves. This reveals the genetic loci and gene pathways underlying leaf morphological phenotypes in own-rooted progeny and also verifies the potential of rootstock genetics to confer modulation of scion canopy features, providing greater potential to select for climate-resilient grapevines. 
    more » « less
  4. Summary Leaf‐out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key.Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf‐out timing and corresponding NSCs.Despite significant differences in leaf‐out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two.Our results suggest that NSCs are coordinated with leaf‐out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing. 
    more » « less
  5. Summary The scope of plant control over its microbiome is a central question in evolutionary biology and agriculture. Leaf traits are known to shape pathogen colonization and disease development, but their impact on the broader community of largely non‐pathogenic fungi that colonize plant leaves remains an open question.We used reciprocal common gardens of the model tree,Populus trichocarpa(black cottonwood), to examine relationships between leaf traits and the leaf mycobiome in two strongly contrasting environments. We measured six leaf traits (stomatal length, stomatal density, carbon‐to‐nitrogen ratio, leaf thickness, leaf dry matter content, and specific leaf area) and used fungal marker gene sequencing to characterize leaf fungal communities for 57 tree genotypes replicated in one mesic and one xeric common garden (809 trees).Several leaf traits covaried with the leaf mycobiome, yet one relationship was paramount: plant genotypes with longer, sparser leaf stomata hosted a greater richness and diversity of more similar fungal species compared to plant genotypes with shorter, denser leaf stomata.These relationships, while modulated by the environment plants were sourced from and grown in, suggest that stomatal traits may be a general mechanism through which plants and the leaf mycobiome influence one another. 
    more » « less