In this article a condition is given to detect the containment among thick subcategories of the bounded derived category of a commutative noetherian ring. More precisely, for a commutative noetherian ring and complexes of -modules with finitely generated homology and , we show is in the thick subcategory generated by if and only if the ghost index of with respect to is finite for each prime of . To do so, we establish a “converse coghost lemma” for the bounded derived category of a non-negatively graded DG algebra with noetherian homology. 
                        more » 
                        « less   
                    This content will become publicly available on November 15, 2025
                            
                            Stable behavior of Frobenius powers over a general hypersurface
                        
                    
    
            The main goal of this paper is to prove, in positive characteristic , stability behavior for the graded Betti numbers in the periodic tails of the minimal resolutions of Frobenius powers of the homogeneous maximal ideals for very general choices of hypersurface in three variables whose degree has the opposite parity to that of . We also find some of the structure of the matrix factorization giving the resolution. We achieve this by developing a method for obtaining the degrees of the generators of the defining ideal of an -compressed Gorenstein Artinian graded algebra from its socle degree, where is a Frobenius power of the homogeneous maximal ideal. As an application, we also obtain the Hilbert–Kunz function of the hypersurface ring, as well as the Castelnuovo–Mumford regularity of the quotients by Frobenius powers of the homogeneous maximal ideal. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2302198
- PAR ID:
- 10555317
- Publisher / Repository:
- American Mathematical Society (AMS)
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society, Series B
- Volume:
- 11
- Issue:
- 40
- ISSN:
- 2330-0000
- Format(s):
- Medium: X Size: p. 1350-1393
- Size(s):
- p. 1350-1393
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Let be an elliptic curve and let be an odd prime of good reduction for . Let be an imaginary quadratic field satisfying the classical Heegner hypothesis and in which splits. The goal of this paper is two-fold: (1) we formulate a -adic BSD conjecture for the -adic -function introduced by Bertolini–Darmon–Prasanna [Duke Math. J. 162 (2013), pp. 1033–1148]; and (2) for an algebraic analogue of , we show that the “leading coefficient” part of our conjecture holds, and that the “order of vanishing” part follows from the expected “maximal non-degeneracy” of an anticyclotomic -adic height. In particular, when the Iwasawa–Greenberg Main Conjecture is known, our results determine the leading coefficient of at up to a -adic unit. Moreover, by adapting the approach of Burungale–Castella–Kim [Algebra Number Theory 15 (2021), pp. 1627–1653], we prove the main conjecture for supersingular primes under mild hypotheses. In the -ordinary case, and under some additional hypotheses, similar results were obtained by Agboola–Castella [J. Théor. Nombres Bordeaux 33 (2021), pp 629–658], but our method is new and completely independent from theirs, and apply to all good primes.more » « less
- 
            In this article we study base change of Poincaré series along a quasi-complete intersection homomorphism , where is a local ring with maximal ideal . In particular, we give a precise relationship between the Poincaré series of a finitely generated -module to when the kernel of is contained in . This generalizes a classical result of Shamash for complete intersection homomorphisms. Our proof goes through base change formulas for Poincaré series under the map of dg algebras , with the Koszul complex on a minimal set of generators for the kernel of .more » « less
- 
            Let be a Noetherian local ring of dimension . We prove that if , then the classical Lech’s inequality can be improved uniformly for all -primary ideals, that is, there exists such that for all -primary ideals . This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators of .more » « less
- 
            This is the first of our papers on quasi-split affine quantum symmetric pairs , focusing on the real rank one case, i.e., equipped with a diagram involution. We construct explicitly a relative braid group action of type on the affine quantum group . Real and imaginary root vectors for are constructed, and a Drinfeld type presentation of is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine quantum groups in the sequels.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
