Abstract Observations reveal two distinct patterns of atmospheric variability associated with wintertime variations in midlatitude sea surface temperatures (SSTs) in the North Pacific sector: 1) a pattern of atmospheric circulation anomalies that peaks 2–3 weeks prior to large SST anomalies in the western North Pacific that is consistent with “atmospheric forcing” of the SST field, and 2) a pattern that lags SST anomalies in the western North Pacific by several weeks that is consistent with the “atmospheric response” to the SST field. Here we explore analogous lead–lag relations between the atmospheric circulation and western North Pacific SST anomalies in two sets of simulations run on the NCAR Community Earth System Model version 1 (CESM1): 1) a simulation run on a fully coupled version of CESM1 and 2) a simulation forced with prescribed, time-evolving SST anomalies over the western North Pacific region. Together, the simulations support the interpretation that the observed lead–lag relationships between western North Pacific SST anomalies and the atmospheric circulation reveal the patterns of atmospheric variability that both force and respond to midlatitude SST anomalies. The results provide numerical evidence that SST variability over the western North Pacific has a demonstrable effect on the large-scale atmospheric circulation throughout the North Pacific sector. 
                        more » 
                        « less   
                    
                            
                            The West Pacific Teleconnection Drives the Interannual Variability of Autumn Wildfire Weather in the Western United States After 2000
                        
                    
    
            Abstract Wildfires pose a significant threat to human society as severe natural disasters. The western United States (US) is one hotspot that has experienced dramatic influences from autumn wildfires especially after 2000, but what has caused its year‐to‐year variations remains poorly understood. By analyzing observational and atmospheric reanalysis datasets, we found that the West Pacific (WP) pattern centered in the western North Pacific acted as a major climatic factor to the post‐2000 autumn wildfire activity by inducing anomalous high pressure over the western US via teleconnections with increased surface temperature, decreased precipitation, and reduced relative humidity. The WP pattern explains about one‐third of the post‐2000 years‐to‐year variance of the western US autumn wildfires. These effects were found to be much weaker in the 1980–1990s, as the active region of WP‐associated high pressure was confined to the eastern North Pacific. Such eastward shift of the WP teleconnection pattern and its resultant, enhanced influence on the weather conditions of western US autumn wildfire after 2000 are also captured by the sea surface temperature (SST)‐forced atmospheric model simulations with the Community Atmosphere Model version 6 (CAM6). The CAM6 ensemble‐mean changes in the WP teleconnection pattern at 2000 is about half of the observed changes, which implies that external radiative forcing and/or SST changes have played an important role in the WP pattern shift. Our results highlight a pressing need to consider the joint impacts of atmospheric internal variability and externally forced climate changes when studying the interannual variations of wildfire activity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2127684
- PAR ID:
- 10555330
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Atmospheric models forced with observed sea surface temperatures (SSTs) suggest a trend toward a more-stabilizing cloud feedback in recent decades, partly due to the surface cooling trend in the eastern Pacific (EP) and the warming trend in the western Pacific (WP). Here, we show model evidence that the low-cloud feedback has contributions from both forced and unforced feedback components and that its time variation arises in large part through changes in the relative importance of the two over time, rather than through variations in forced or unforced feedbacks themselves. Initial-condition large ensembles (LEs) suggest that the SST patterns are dominated by unforced variations for 30-yr windows ending prior to the 1980s. In general, unforced SSTs are representative of an ENSO-like pattern, which corresponds to weak low-level stability in the tropics and less-stabilizing low-cloud feedback. Since the 1980s, the forced signals have become stronger, outweighing the unforced signals for the 30-yr windows ending after the 2010s. Forced SSTs are characterized by relatively uniform warming with an enhancement in the WP, corresponding to a more-stabilizing low-cloud feedback in most cases. The time-evolving SST pattern due to this increasing importance of forced signals is the dominant contributor to the recent stabilizing shift of low-cloud feedback in the LEs. Using single-forcing LEs, we further find that if only greenhouse gases evolve with time, the transition to the domination of forced signals occurs 10–20 years earlier compared to the LEs with full forcings, which can be understood through the compensating effect between aerosols and greenhouse gases.more » « less
- 
            Multidecadal Variations in the Tropical Western Pacific Driven by Externally‐Forced AMV‐Like ChangesAbstract Multidecadal sea surface temperature (SST) variations in the tropical western Pacific (TWP) have been attributed to nonlinear external forcing and remote influences from the Atlantic Multidecadal Variability (AMV). However, the AMV resulted from both internal variability (IV) and external forcing. Thus, the origins of the TWP SST variations are not well understood. By analyzing observations and model simulations, we show that more than half of the decadal to multidecadal SST variations in TWP during 1920–2020 resulted from external forcing with the forced component correlated with AMV, while the internal component is unrelated to AMV. Furthermore, about 43%–49% of the forced AMV‐like SST variations in TWP result from remote influences of the forced AMV in the Atlantic via atmospheric teleconnection over the North Pacific, with the rest from other remote or local processes.more » « less
- 
            Abstract Under anthropogenic warming, future changes to climate variability beyond specific modes such as the El Niño-Southern Oscillation (ENSO) have not been well-characterized. In the Community Earth System Model version 2 Large Ensemble (CESM2-LE) climate model, the future change to sea surface temperature (SST) variability (and correspondingly marine heatwave intensity) on monthly timescales and longer is spatially heterogeneous. We examined these projected changes (between 1960–2000 and 2060–2100) in the North Pacific using a local linear stochastic-deterministic model, which allowed us to quantify the effect of changes to three drivers on SST variability: ocean “memory” (the SST damping timescale), ENSO teleconnections, and stochastic noise forcing. The ocean memory declines in most areas, but lengthens in the central North Pacific. This change is primarily due to changes in air-sea feedbacks and ocean damping, with the shallowing mixed layer depth playing a secondary role. An eastward shift of the ENSO teleconnection pattern is primarily responsible for the pattern of SST variance change.more » « less
- 
            Abstract Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlike when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
