skip to main content

Title: Destructive Interference of ENSO on North Pacific SST and North American Precipitation Associated with Aleutian Low Variability

Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlike when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
p. 3567-3585
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The teleconnection between tropical and extratropical climates in the North Pacific and continental regions of eastern Asia and western North America is known to vary on decadal to multidecadal time scales. In this study, the teleconnection pattern is studied with observational and reanalysis data products. The regional focus is set on the Hawaiian Islands in the central subtropical part of the North Pacific. By analysing correlations between regional climate indices and large‐scale climate modes during the years 1980 and 2014, it was found that the correlation between El Niño—Southern Oscillation (ENSO) and the synoptic weather activity over the Hawaiian Islands decreased over time. Composite analysis of the geopotential height anomalies and upper level winds suggest that the systematic shift in the North Pacific Jet (NPJ) position had an impact on the teleconnection between tropical Pacific SST and winter storm activity and precipitation variability in Hawai'i. The change in the correlations and in the NPJ structure coincides with a transition from the positive phase of the Pacific Decadal Oscillation (PDO) towards a neutral and weak negative state. This observation‐based study provides a central subtropical Pacific viewpoint in support of the growing body of research studies that have reported a major shift in the Pacific climate system during the mid‐1990s. The article further discusses the potential role of decadal‐scale changes in the North Pacific Oscillation (NPO) phase in changing the strength of the ENSO teleconnection with synoptic activity over the Hawaiian Islands. The results of this study are relevant to paleoclimate interpretation of individual proxy records as well as for regional downscaling of future rainfall for the Hawaiian Islands.

    more » « less
  2. Stochastic variability of internal atmospheric modes, known as teleconnection patterns, drives large-scale patterns of low-frequency SST variability in the extratropics . To investigate how the decadal component of this stochastically driven variability in the South and North Pacific affects the tropical Pacific and contributes to the observed basinwide pattern of decadal variability, a suite of climate model experiments was conducted . In these experiments, the models are forced with constant surface heat flux anomalies associated with the decadal component of the dominant atmospheric modes, particularly the Pacific–South American (PSA) and North Pacific Oscillation (NPO) patterns . Both the PSA and NPO modes induce basinwide SST anomalies in the tropical Pacific and beyond that resemble the observed interdecadal Pacific oscillation . The subtropical SST anomalies forced by the PSA and NPO modes propagate to the equatorial Pacific mainly through the wind–evaporation–SST feedback . This atmospheric bridge is stronger from the South Pacific than the North Pacific due to the northward displacement of the intertropical convergence zone and the associated northward advection of momentum anomalies. The equatorial ocean dynamics is also more strongly influenced by atmospheric circulation changes induced by the PSA mode than the NPO mode. In the PSA experiment, persistent and zonally coherent wind stress curl anomalies over the South Pacific affect the zonal mean depth of the equatorial thermocline and weaken the equatorial SST anomalies resulting from the atmospheric bridge. This oceanic adjustment serves as a delayed negative feedback and may be important for setting the time scales of tropical Pacific decadal variability.

    more » « less
  3. null (Ed.)
    Abstract Using a high-resolution atmospheric general circulation model simulation of unprecedented ensemble size, we examine potential predictability of monthly anomalies under El Niño Southern Oscillation (ENSO) forcing and back-ground internal variability. This study reveals the pronounced month-to-month evolution of both the ENSO forcing signal and internal variability. Internal variance in upper-level geopotential height decreases (∼ 10%) over the North Pacific during El Niño as the westerly jet extends eastward, allowing forced signals to account for a greater fraction of the total variability, and leading to increased potential predictability. We identify February and March of El Niño years as the most predictable months using a signal-to-noise analysis. In contrast, December, a month typically included in teleconnection studies, shows little-to-no potential predictability. We show that the seasonal evolution of SST forcing and variability leads to significant signal-to-noise relationships that can be directly linked to both upper-level and surface variable predictability for a given month. The stark changes in forced response, internal variability, and thus signal-to-noise across an ENSO season indicate that subseasonal fields should be used to diagnose potential predictability over North America associated with ENSO teleconnections. Using surface air temperature and precipitation as examples, this study provides motivation to pursue ‘windows of forecast opportunity’, in which statistical skill can be developed, tested, and leveraged to determine times and regions in which this skill may be elevated. 
    more » « less
  4. Abstract. The El Niño–Southern Oscillation (ENSO) is known to modulate the strength and frequency of stratosphere-to-troposphere transport (STT) of ozone over the Pacific–North American region during late winter to early summer. Dynamical processes that have been proposed to account for this variability include variations in the amount of ozone in the lowermoststratosphere that is available for STT and tropospheric circulation-relatedvariations in the frequency and geographic distribution of individual STTevents. Here we use a large ensemble of Whole Atmosphere Community Climate Model(WACCM) simulations (forced by sea-surface temperature (SST) boundaryconditions consistent with each phase of ENSO) to show that variability inlower-stratospheric ozone and shifts in the Pacific tropospheric jetconstructively contribute to the amount of STT of ozone in the NorthAmerican region during both ENSO phases. In terms of stratosphericvariability, ENSO drives ozone anomalies resembling the Pacific–NorthAmerican teleconnection pattern that span much of the lower stratospherebelow 50 hPa. These ozone anomalies, which dominate over other ENSO-drivenchanges in the Brewer–Dobson circulation (including changes due to both thestratospheric residual circulation and quasi-isentropic mixing), stronglymodulate the amount of ozone available for STT transport. As a result,during late winter (February–March), the stratospheric ozone response to theteleconnections constructively reinforces anomalous ENSO-jet-driven STT ofozone. However, as ENSO forcing weakens as spring progresses into summer(April–June), the direct effects of the ENSO-jet-driven STT transportweaken. Nevertheless, the residual impacts of the teleconnections on theamount of ozone in the lower stratosphere persist, and these anomalies inturn continue to cause anomalous STT of ozone. These results should provehelpful for interpreting the utility of ENSO as a subseasonal predictor ofboth free-tropospheric ozone and the probability of stratospheric ozoneintrusion events that may cause exceedances in surface air qualitystandards. 
    more » « less
  5. Abstract

    The summer North American dipole (NAD) is a pattern of climate variability linked to variations in boreal forest seed production and migration of seed-eating birds. This is a modeling investigation of two teleconnections identified as drivers of the NAD in prior observational work: 1) tropically sourced atmospheric Rossby waves associated with anomalies in the phase distribution of the Madden–Julian oscillation (MJO) (i.e., phases 1 and 6 are anomalously prominent), and 2) a pan-Pacific atmospheric Rossby wave linked to East Asian monsoonal (EAM) convection. Sea surface temperature (SST) boundary forcing experiments were conducted with the Community Earth System Model 2 (CESM2) to trigger convection patterns that align with those observed during EAM and nonuniform phase distributions of MJO. For the EAM case, an El Niño–like SST dipole pattern combined with cool southern Japan SST forcing produced a convection and jet stream shift anomaly over East Asia and the northern Pacific with a positive NAD pattern downstream over North America, similar to the observed pattern when precipitation over East Asia (PEA) is relatively high. A companion experiment with only ENSO-like SST forcing also produced the NAD but featured a different structure over the Eurasian continent with a response resembling the summer east Atlantic (SEA) pattern over eastern North America and the eastern Atlantic. Simulation results suggest that the southern Japan SST forcing region has a secondary importance in triggering the NAD, producing only a somewhat NAD-like pattern by itself and only slightly improving the NAD produced by ENSO-like forcing. Simulations using SST forcing to induce seasonal convection anomalies with spatial patterns similar to anomalously frequent occurrence of MJO phase 1 (phase 6) produced circulation response patterns resembling the positive NAD (negative NAD).

    more » « less