skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cell encapsulation in gelatin methacryloyl bioinks impairs microscale diffusion properties
Light-assisted bioprinted gelatin methacryloyl (GelMA) constructs have been used for cell-laden microtissues and organoids. GelMA can be loaded by desired cells, which can regulate the biophysical properties of bioprinted constructs. We study how the degree of methacrylation (MA degree), GelMA mass concentration, and cell density change mass transport properties. We introduce a fluorescent-microscopy-based method of biotransport testing with improved sensitivity compared to the traditional particle tracking methods. The diffusion capacity of GelMA with a higher MA significantly decreased compared to a lower MA. Opposed to a steady range of linear elastic moduli, the diffusion coefficient in GelMA varied when cell densities ranged from 0 to 10 × 106cells/ml. A comparative study of different cell sizes showed a higher diffusivity coefficient for the case of larger cells. The results of this study can help bioengineers and scientists to better control the biotransport characteristics in light-assisted bioprinted microtissues and organoids.  more » « less
Award ID(s):
2243506
PAR ID:
10555378
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
11
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Boland, Thomas (Ed.)
    The conventional real-time screening in organs-on-chips is limited to optical tracking of pre-tagged cells and biological agents. This work introduces an efficient biofabrication protocol to integrate tunable hydrogel electrodes into 3D bioprinted-on-chips. We established our method of fabricating cell-laden hydrogel-based microfluidic chips through digital light processing-based 3D bioprinting. Our conductive ink includes poly-(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT: PSS) microparticles doped in polyethylene glycol diacrylate (PEGDA). We optimized the manufacturing process of PEDOT: PSS microparticles characterized our conductive ink for different 3D bioprinting parameters, geometries, and materials conditions. While the literature is limited to 0.5% w/v for PEDOT: PSS microparticle concentration, we increased their concentration to 5% w/v with superior biological responses. We measured the conductivity in the 3–15 m/m for a range of 0.5%–5% w/v microparticles, and we showed the effectiveness of 3D-printed electrodes for predicting cell responses when encapsulated in gelatin-methacryloyl (GelMA). Interestingly, a higher cellular activity was observed in the case of 5% w/v microparticles compared to 0.5% w/v microparticles. Electrochemical impedance spectroscopy measurements indicated significant differences in cell densities and spheroid sizes embedded in GelMA microtissues. 
    more » « less
  2. The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink. 
    more » « less
  3. Human neural organoid models have become an important tool for studying neurobiology. However, improving the representativeness of neural cell populations in such organoids remains a major effort. In this work, we compared Matrigel, a commercially available matrix, to a neural cadherin (N-cadherin) peptide-functionalized gelatin methacryloyl hydrogel (termed GelMA-Cad) for culturing cortical neural organoids. We determined that peptide presentation can tune cell fate and diversity in gelatin-based matrices during differentiation. Of particular note, cortical organoids cultured in GelMA-Cad hydrogels mapped more closely to human fetal populations and produced neurons with more spontaneous excitatory postsynaptic currents relative to Matrigel. These results provide compelling evidence that matrix-tethered signaling peptides can influence neural organoid differentiation, opening an avenue to control stem cell fate. Moreover, outcomes from this work showcase the technical utility of GelMA-Cad as a simple and defined hydrogel alternative to Matrigel for neural organoid culture. 
    more » « less
  4. Abstract Adhesive tissue engineering scaffolds (ATESs) have emerged as an innovative alternative means, replacing sutures and bioglues, to secure the implants onto target tissues. Relying on their intrinsic tissue adhesion characteristics, ATES systems enable minimally invasive delivery of various scaffolds. This study investigates development of the first class of 3D bioprinted ATES constructs using functionalized hydrogel bioinks. Two ATES delivery strategies, in situ printing onto the adherend versus printing and then transferring to the target surface, are tested using two bioprinting methods, embedded versus air printing. Dopamine‐modified methacrylated hyaluronic acid (HAMA‐Dopa) and gelatin methacrylate (GelMA) are used as the main bioink components, enabling fabrication of scaffolds with enhanced adhesion and crosslinking properties. Results demonstrate that dopamine modification improved adhesive properties of the HAMA‐Dopa/GelMA constructs under various loading conditions, while maintaining their structural fidelity, stability, mechanical properties, and biocompatibility. While directly printing onto the adherend yields superior adhesive strength, embedded printing followed by transfer to the target tissue demonstrates greater potential for translational applications. Together, these results demonstrate the potential of bioprinted ATESs as off‐the‐shelf medical devices for diverse biomedical applications. 
    more » « less
  5. Abstract The convergence of nanotechnology and bioprinting is redefining the landscape of tissue engineering, with nanocomposite gelatin methacryloyl (GelMA) bioinks emerging as a transformative platform for the biofabrication of multifunctional tissue‐specific constructs. GelMA, a photocrosslinkable hydrogel, has rapidly gained attention due to its intrinsic bioactivity, tunable mechanical properties, and compatibility with living cells. However, despite its wide applicability regenerating muscle, cartilage, bone, vascular, cardiac, and neural tissues, native GelMA suffers from limited mechanical strength and insufficient biofunctionality to recapitulate the complexity of specialized tissues. To overcome these shortcomings, recent strategies have focused on the incorporation of nanomaterials into GelMA matrices, ranging from inorganic and carbon‐based to metallic, polymeric, and lipidic nanomaterials. These nanocomposite bioprinted scaffolds impart critical enhancements, including improved mechanical robustness, electrical conductivity, stimuli‐responsiveness, and bioactivity, while also enabling advanced functionalities such as controlled drug release and real‐time responsiveness to the cellular microenvironment. This review examines the bioprinting parameters, material synergies, and design strategies governing the performance of nanocomposite GelMA bioinks. By integrating the tunability of photocrosslinkable bioinks with the multifunctionality of nanomaterials, nanocomposite GelMA bioinks represent a next‐generation platform capable of addressing the complex demands of tissue repair and regeneration. 
    more » « less