Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Boland, Thomas (Ed.)The conventional real-time screening in organs-on-chips is limited to optical tracking of pre-tagged cells and biological agents. This work introduces an efficient biofabrication protocol to integrate tunable hydrogel electrodes into 3D bioprinted-on-chips. We established our method of fabricating cell-laden hydrogel-based microfluidic chips through digital light processing-based 3D bioprinting. Our conductive ink includes poly-(3,4-ethylene-dioxythiophene)-polystyrene sulfonate (PEDOT: PSS) microparticles doped in polyethylene glycol diacrylate (PEGDA). We optimized the manufacturing process of PEDOT: PSS microparticles characterized our conductive ink for different 3D bioprinting parameters, geometries, and materials conditions. While the literature is limited to 0.5% w/v for PEDOT: PSS microparticle concentration, we increased their concentration to 5% w/v with superior biological responses. We measured the conductivity in the 3–15 m/m for a range of 0.5%–5% w/v microparticles, and we showed the effectiveness of 3D-printed electrodes for predicting cell responses when encapsulated in gelatin-methacryloyl (GelMA). Interestingly, a higher cellular activity was observed in the case of 5% w/v microparticles compared to 0.5% w/v microparticles. Electrochemical impedance spectroscopy measurements indicated significant differences in cell densities and spheroid sizes embedded in GelMA microtissues.more » « less
-
The generation of acoustic vortex beams has attracted an increasing amount of research attention in recent years, offering a range of functions, including acoustic communication, particle manipulation, and biomedical ultrasound. However, incorporating more vortices and broadening the capacity of these beams and associated devices in three dimensions pose challenges. Traditional methods often necessitate complex transducer arrays and are constrained by conditions such as system complexity and the medium in which they operate. In this paper, a 3D printed acoustic lens capable of generating a double vortex pattern with an optional focusing profile in water was demonstrated. The performance of the proposed lens was evaluated through computational simulations using finite element analysis and experimental tests based on underwater measurements. The results indicate that by altering the positioning of the vortices’ axes, it is possible to control both the intensity and the location of the pressurized zone. The proposed approach shows promise for enhancing the effectiveness and versatility of various applications by generating a larger number of vortices and freely tailoring the focal profile with a single lens, thereby expanding the practical uses of acoustic vortex technology.more » « less
-
Structures with specific graded geometries or properties can cause spatial separation and local field enhancement of wave energy. This phenomenon is called rainbow trapping, which manifests itself as stopping the propagation of waves at different locations according to their frequencies. In acoustics, most research on rainbow trapping has focused on wave propagation in one dimension. This research examined the elastic wave trapping performance of a two-dimensional (2D) axisymmetric grooved phononic crystal plate structure. The performance of the proposed structure is validated using numerical simulations based on finite element analysis and experimental measurements using a laser Doppler vibrometer. It is found that rainbow trapping within the frequency range of 165–205 kHz is achieved, where elastic waves are trapped at different radial distances in the plate. The results demonstrate that the proposed design is capable of effectively capturing elastic waves across a broad frequency range of interest. This concept could be useful in applications such as filtering and energy harvesting by concentrating wave energy at different locations in the structure.more » « less
-
Light-assisted bioprinted gelatin methacryloyl (GelMA) constructs have been used for cell-laden microtissues and organoids. GelMA can be loaded by desired cells, which can regulate the biophysical properties of bioprinted constructs. We study how the degree of methacrylation (MA degree), GelMA mass concentration, and cell density change mass transport properties. We introduce a fluorescent-microscopy-based method of biotransport testing with improved sensitivity compared to the traditional particle tracking methods. The diffusion capacity of GelMA with a higher MA significantly decreased compared to a lower MA. Opposed to a steady range of linear elastic moduli, the diffusion coefficient in GelMA varied when cell densities ranged from 0 to 10 × 106cells/ml. A comparative study of different cell sizes showed a higher diffusivity coefficient for the case of larger cells. The results of this study can help bioengineers and scientists to better control the biotransport characteristics in light-assisted bioprinted microtissues and organoids.more » « less
An official website of the United States government
