Abstract The behavior of suspended particles in turbulent flows is a recalcitrant problem spanning wide‐ranging fields including geomorphology, hydrology, and dispersion of particulate matter in the atmosphere. One key mechanism underlying particle suspension is the difference between particle settling velocity (ws) in turbulence and its still water counterpart (wso). This difference is explored here for a range of particle‐to‐fluid densities (1–10) and particle diameter to Kolmogorov micro‐eddy sizes (0.1–10). Conventional models of particle fluxes that equatewstowsoresult in eddy diffusivities and turbulent Schmidt numbers contradictory to laboratory experiments. Incorporating virtual mass and Basset history forces resolves these inconsistencies, providing clarity as to whyws/wsois sub‐unity for the aforementioned conditions. The proposed formulation can be imminently used to model particle settling in turbulence, especially when sediment distribution outcomes over extended time scales far surpassing turbulence time scales are sought.
more »
« less
Machine‐Assisted Physical Closure for Coarse Suspended Sediments in Vegetated Turbulent Channel Flows
Abstract The parameterization of suspended sediments in vegetated flows presents a significant challenge, yet it is crucial across various environmental and geophysical disciplines. This study focuses on modeling suspended sediment concentrations (SSC) in vegetated flows with a canopy density ofavH ∈ [0.3, 1.0] by examining turbulent dispersive flux. While conventional studies disregard dispersive momentum flux foravH> 0.1, our findings reveal significant dispersive sediment flux for large particles with a diameter‐to‐Kolmogorov length ratio whendp/η > 0.1. Traditional Rouse alike approaches therefore must be revised to account for this effect. We introduce a hybrid methodology that combines physical modeling with machine learning to parameterize dispersive flux, guided by constraints from diffusive and settling fluxes, characterized using recent covariance and turbulent settling methods, respectively. The model predictions align well with reported SSC data, demonstrating the versatility of the model in parameterizing sediment‐vegetation interactions in turbulent flows.
more »
« less
- Award ID(s):
- 2019625
- PAR ID:
- 10555393
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aquatic vegetation has the potential to increase suspended sediment capture while also increasing sediment resuspension and bedload transport. Suspended sediment can induce density stratification, which modulates the turbulence in the water column. We derive a Rouse‐based formulation for suspended sediment concentration (SSC) including the effect of sediment‐induced density stratification. We perform Large Eddy Simulations of vegetated and non‐vegetated channels to explicitly highlight the effect of stratification on SSC profiles. We found that the impact of stratification is dominant in the near‐bed region within the bottom boundary layer, affecting both sediment resuspension and bedload transport. Stratification reduces the likelihood of both dominant sweep and ejection events in the near the bed region which may affect sediment entrainment and bedload transport. Modifications to existing models of sediment entrainment and bedload transport are suggested to account for the effects of sediment induced stratification in vegetated and non‐vegetated channels.more » « less
-
Abstract Dissolved Oxygen (DO) fluxes across the air‐water and sediment‐water interface (AWI and SWI) are two major processes that govern the amount of oxygen available to living organisms in aquatic ecosystems. Aquatic vegetation generates different scales of turbulence that change the flow structure and affect gas transfer mechanisms at AWI and SWI. A series of laboratory experiments with rigid cylinder arrays to mimic vegetation was conducted in a recirculating race‐track flume with a lightweight sediment bed. 2D Planar Particle Image Velocimetry was used to characterize the flow field under different submergence ratios and array densities to access the effect of vegetation‐generated turbulence on gas transfer. Gas transfer rate across AWI was determined by DO re‐aeration curves. The effective diffusion coefficient for gas transfer flux across SWI was estimated by the difference between near‐bed and near‐surface DO concentrations. When sediment begins to mobilize, near‐bed suspended sediment provides a negative buoyancy term that increases the critical Reynolds number for the surface gas transfer process according to a modified Surface Renewal model for vegetated flows. A new Reynolds number dependence model using near‐bed turbulent kinetic energy as an indicator is proposed to provide a universal prediction for the interfacial flux across SWI in flows with aquatic vegetation. This study provides critical information and useful models for future studies on water quality management and ecosystem restoration in natural water environments such as lakes, rivers, and wetlands.more » « less
-
Abstract The vertical settling of dust grains in a circumstellar disk, characterized by their scale height, is a pivotal process in the formation of planets. This study offers in-depth analysis and modeling of the radial scale height profile of dust grains in the HL Tau system, leveraging high-resolution polarization observations. We resolve the inner disk’s polarization, revealing a significant nearside–farside asymmetry, with the nearside being markedly brighter than the farside in polarized intensity. This asymmetry is attributed to a geometrically thick inner dust disk, suggesting a large aspect ratio ofH/R≥ 0.15, whereHis the dust scale height andRis the radius. The first ring at 20 au exhibits an azimuthal contrast, with polarization enhanced along the minor axis, indicating a moderately thick dust ring withH/R ≈ 0.1. The absence of the nearside–farside asymmetry at larger scales implies a thin dust layer, withH/R < 0.05. Taken together, these findings depict a disk with a turbulent inner region and a settled outer disk, requiring a variable turbulence model withαincreasing from 10−5at 100 au to 10−2.5at 20 au. This research sheds light on dust settling and turbulence levels within protoplanetary disks, providing valuable insights into the mechanisms of planet formation.more » « less
-
Abstract Wave‐ and current‐supported turbidity currents (WCSTCs) are one of the sediment delivery mechanisms from the inner shelf to the shelf break. Therefore, they play a significant role in the global cycles of geo‐chemically important particulate matter. Recent observations suggest that WCSTCs can transform into self‐driven turbidity currents close to the continental margin. However, little is known regarding the critical conditions that grow self‐driven turbidity currents out of WCSTCs. This is in part due to the knowledge gaps in the dynamics of WCSTCs regarding the role of density stratification. Especially the effect of sediment entrainment on the amount of sediment suspension has been overlooked. To this end, this study revisits the existing theoretical framework for a simplified WCSTC, in which waves are absent, that is, along‐shelf current‐supported turbidity current. A depth‐integrated advection model is developed for suspended sediment concentration. The model results, which are verified by turbulence‐resolving simulations, indicate that the amount of suspended sediment load is regulated by the equilibrium among positive/negative feedback between entrainment and cross‐shelf gravity force/density stratification, and settling flux dissociated with density stratification. It is also found that critical density stratification is not a necessary condition for equilibrium. A quantitative relation is developed for the critical conditions for self‐driven turbidity currents, which is a function of bed shear stress, entrainment parameters, bed slope, and sediment settling velocity. In addition, the suspended sediment load is analytically estimated from the model developed.more » « less
An official website of the United States government
