Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A neural network (NN) surrogate of the NASA GISS ModelE atmosphere (version E3) is trained on a perturbed parameter ensemble (PPE) spanning 45 physics parameters and 36 outputs. The NN is leveraged in a Markov Chain Monte Carlo (MCMC) Bayesian parameter inference framework to generate a secondposteriorconstrained ensemble coined a “calibrated physics ensemble,” or CPE. The CPE members are characterized by diverse parameter combinations and are, by definition, close to top‐of‐atmosphere radiative balance, and must broadly agree with numerous hydrologic, energy cycle and radiative forcing metrics simultaneously. Global observations of numerous cloud, environment, and radiation properties (provided by global satellite products) are crucial for CPE generation. The inference framework explicitly accounts for discrepancies (or biases) in satellite products during CPE generation. We demonstrate that product discrepancies strongly impact calibration of important model parameter settings (e.g., convective plume entrainment rates; fall speed for cloud ice). Structural improvements new to E3 are retained across CPE members (e.g., stratocumulus simulation). Notably, the framework improved the simulation of shallow cumulus and Amazon rainfall while not degrading radiation fields, an upgrade that neither default parameters nor Latin Hypercube parameter searching achieved. Analyses of the initial PPE suggested several parameters were unimportant for output variation. However, many “unimportant” parameters were needed for CPE generation, a result that brings to the forefront how parameter importance should be determined in PPEs. From the CPE, two diverse 45‐dimensional parameter configurations are retained to generate radiatively‐balanced, auto‐tuned atmospheres that were used in two E3 submissions to CMIP6.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract The increasing size and severity of wildfires across the western United States have generated dangerous levels of PM2.5concentrations in recent years. In a changing climate, expanding the use of prescribed fires is widely considered to be the most robust fire mitigation strategy. However, reliably forecasting the potential air quality impact from prescribed fires, which is critical in planning the prescribed fires’ location and time, at hourly to daily time scales remains a challenging problem. In this paper, we introduce a spatio-temporal graph neural network (GNN)-based forecasting model for hourly PM2.5predictions across California. Utilizing a two-step approach, we use our forecasting model to predict the net and ambient PM2.5concentrations, which are used to estimate wildfire contributions. Integrating the GNN-based PM2.5forecasting model with simulations of historically prescribed fires, we propose a novel framework to forecast their air quality impact. This framework determines that March is the optimal month for implementing prescribed fires in California and quantifies the potential air quality trade-offs involved in conducting more prescribed fires outside the peak of the fire season.more » « less
-
Abstract In climate studies, it is crucial to distinguish between changes caused by natural variability and those resulting from external forcing. Here we use a suite of numerical experiments based on the ECCO‐Darwin ocean biogeochemistry model to separate the impact of the atmospheric carbon dioxide (CO2) growth rate and climate on the ocean carbon sink — with a goal of disentangling the space‐time variability of the dominant drivers. When globally integrated, the variable atmospheric growth rate and climate exhibit similar magnitude impacts on ocean carbon uptake. At local scales, interannual variability in air‐sea CO2flux is dominated by climate. The implications of our study for real‐world ocean observing systems are clear: in order to detect future changes in the ocean sink due to slowing atmospheric CO2growth rates, better observing systems and constraints on climate‐driven ocean variability are required.more » « less
-
Abstract Prediction of dynamic environmental variables in unmonitored sites remains a long-standing challenge for water resources science. The majority of the world’s freshwater resources have inadequate monitoring of critical environmental variables needed for management. Yet, the need to have widespread predictions of hydrological variables such as river flow and water quality has become increasingly urgent due to climate and land use change over the past decades, and their associated impacts on water resources. Modern machine learning methods increasingly outperform their process-based and empirical model counterparts for hydrologic time series prediction with their ability to extract information from large, diverse data sets. We review relevant state-of-the art applications of machine learning for streamflow, water quality, and other water resources prediction and discuss opportunities to improve the use of machine learning with emerging methods for incorporating watershed characteristics and process knowledge into classical, deep learning, and transfer learning methodologies. The analysis here suggests most prior efforts have been focused on deep learning frameworks built on many sites for predictions at daily time scales in the United States, but that comparisons between different classes of machine learning methods are few and inadequate. We identify several open questions for time series predictions in unmonitored sites that include incorporating dynamic inputs and site characteristics, mechanistic understanding and spatial context, and explainable AI techniques in modern machine learning frameworks.more » « less
-
Abstract Machine learning (ML) is a revolutionary technology with demonstrable applications across multiple disciplines. Within the Earth science community, ML has been most visible for weather forecasting, producing forecasts that rival modern physics‐based models. Given the importance of deepening our understanding and improving predictions of the Earth system on all time scales, efforts are now underway to develop Earth‐system models (ESMs) capable of representing all components of the coupled Earth system (or their aggregated behavior) and their response to external changes over long timescales. Building trust in ESMs is a much more difficult problem than for weather forecast models, not least because the model must represent the alternate (e.g., future or paleoclimatic) coupled states of the system for which there are no direct observations. Given that the physical principles that enable predictions about the response of the Earth system are often not explicitly coded in these ML‐based models, demonstrating the credibility of ML‐based ESMs thus requires us to build evidence of their consistency with the physical system. To this end, this paper puts forward five recommendations to enhance comprehensive, standardized, and independent evaluation of ML‐based ESMs to strengthen their credibility and promote their wider use.more » « less
-
Abstract Extreme winds associated with tropical cyclones (TCs) can cause significant loss of life and economic damage globally, highlighting the need for accurate, high‐resolution modeling and forecasting for wind. However, due to their coarse horizontal resolution, most global climate and weather models suffer from chronic underprediction of TC wind speeds, limiting their use for impact analysis and energy modeling. In this study, we introduce a cascading deep learning framework designed to downscale high‐resolution TC wind fields given low‐resolution data. Our approach maps 85 TC events from ERA5 data (0.25° resolution) to high‐resolution (0.05° resolution) observations at 6‐hr intervals. The initial component is a debiasing neural network designed to model accurate wind speed observations using ERA5 data. The second component employs a generative super‐resolution strategy based on a conditional denoising diffusion probabilistic model (DDPM) to enhance the spatial resolution and to produce ensemble estimates. The model is able to accurately model intensity and produce realistic radial profiles and fine‐scale spatial structures of wind fields, with a percentage mean bias of −3.74% compared to the high‐resolution observations. Our downscaling framework enables the prediction of high‐resolution wind fields using widely available low‐resolution and intensity wind data, allowing for the modeling of past events and the assessment of future TC risks.more » « less
-
Abstract Terrestrial processes influence the atmosphere by controlling land‐to‐atmosphere fluxes of energy, water, and carbon. Prior research has demonstrated that parameter uncertainty drives uncertainty in land surface fluxes. However, the influence of land process uncertainty on the climate system remains underexplored. Here, we quantify how assumptions about land processes impact climate using a perturbed parameter ensemble for 18 land parameters in the Community Earth System Model version 2 under preindustrial conditions. We find that an observationally‐informed range of land parameters generate biogeophysical feedbacks that significantly influence the mean climate state, largely by modifying evapotranspiration. Global mean land surface temperature ranges by 2.2°C across our ensemble (σ = 0.5°C) and precipitation changes were significant and spatially variable. Our analysis demonstrates that the impacts of land parameter uncertainty on surface fluxes propagate to the entire Earth system, and provides insights into where and how land process uncertainty influences climate.more » « less
-
Abstract The parameterization of suspended sediments in vegetated flows presents a significant challenge, yet it is crucial across various environmental and geophysical disciplines. This study focuses on modeling suspended sediment concentrations (SSC) in vegetated flows with a canopy density ofavH ∈ [0.3, 1.0] by examining turbulent dispersive flux. While conventional studies disregard dispersive momentum flux foravH> 0.1, our findings reveal significant dispersive sediment flux for large particles with a diameter‐to‐Kolmogorov length ratio whendp/η > 0.1. Traditional Rouse alike approaches therefore must be revised to account for this effect. We introduce a hybrid methodology that combines physical modeling with machine learning to parameterize dispersive flux, guided by constraints from diffusive and settling fluxes, characterized using recent covariance and turbulent settling methods, respectively. The model predictions align well with reported SSC data, demonstrating the versatility of the model in parameterizing sediment‐vegetation interactions in turbulent flows.more » « less
-
Abstract Aerosol‐cloud interactions (ACI) in warm clouds are the primary source of uncertainty in effective radiative forcing (ERF) during the historical period and, by extension, inferred climate sensitivity. The ERF due to ACI (ERFaci) is composed of the radiative forcing due to changes in cloud microphysics and cloud adjustments to microphysics. Here, we examine the processes that drive ERFaci using a perturbed parameter ensemble (PPE) hosted in CAM6. Observational constraints on the PPE result in substantial constraints in the response of cloud microphysics and macrophysics to anthropogenic aerosol, but only minimal constraint on ERFaci. Examination of cloud and radiation processes in the PPE reveal buffering of ERFaci by the interaction of precipitation efficiency and radiative susceptibility.more » « less
-
Abstract The Consistent Artificial Intelligence (AI)-based Soil Moisture (CASM) dataset is a global, consistent, and long-term, remote sensing soil moisture (SM) dataset created using machine learning. It is based on the NASA Soil Moisture Active Passive (SMAP) satellite mission SM data and is aimed at extrapolating SMAP-like quality SM back in time using previous satellite microwave platforms. CASM represents SM in the top soil layer, and it is defined on a global 25 km EASE-2 grid and for 2002–2020 with a 3-day temporal resolution. The seasonal cycle is removed for the neural network training to ensure its skill is targeted at predicting SM extremes. CASM comparison to 367 globalin-situSM monitoring sites shows a SMAP-like median correlation of 0.66. Additionally, the SM product uncertainty was assessed, and both aleatoric and epistemic uncertainties were estimated and included in the dataset. CASM dataset can be used to study a wide range of hydrological, carbon cycle, and energy processes since only a consistent long-term dataset allows assessing changes in water availability and water stress.more » « less
An official website of the United States government
