skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure–function relationships in pure archaeal bipolar tetraether lipids
A series of archaeal bipolar glycerol dialkyl glycerol tetraether (GDGT) lipids were synthesized. Structural properties of self-assembled structures of GDGTs were studied and related to functional behavior such as membrane fusion.  more » « less
Award ID(s):
1915727
PAR ID:
10555422
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Chemical Science Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Science
Volume:
15
Issue:
35
ISSN:
2041-6520
Page Range / eLocation ID:
14273 to 14286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conversion of epichlorohydrin to glycidyl ethers creates versatile precursors that can be transformed into a variety of molecular species with glycerol skeletons, enabling the design of molecules with highly tailored functionalities. The synthesis of 2,2,2‐trifluoroethyl glycidyl ether (TFGE, IUPAC name: 2‐[(2,2,2‐trifluoroethoxy)methyl]oxirane, CAS# 1535‐91‐7) was optimized to provide high yield/selectivity and good “green metrics.” TFGE was then used as a platform molecule in the synthesis of asymmetric glycerol 1,3‐diether‐2‐alcohol derivatives, which were subsequently transformed to 1,2,3‐triethers or 1,3‐diether‐2‐ketones. The density, viscosity, and CO2solubility of each molecule were measured and compared with those of other glycerol‐derived compounds as well as compounds with similar functional groups. Furthermore, quantum chemical calculations were performed to understand the structure–property–performance relationships of these molecules for CO2absorption. Based on the results in this work, we foresee that TFGE (and similar glycidyl ethers) would offer great flexibility in molecular design of green solvents and precursors to more complex compounds. 
    more » « less
  2. null (Ed.)
    The increasing demand for bioderived plastics and rubbers and the large supply of glycerol makes it an excellent starting chemical for the production of biopolymers. Little success in commercially viable glycerol polymers has yet to be realized. In particular, high molecular weight thermoplastics have been especially elusive due to the multifunctional nature of glycerol. This work details the production of glycerol–acrylic biopolymers. By esterifying glycerol with acrylic acid, and subsequent RAFT polymerization to suppress the gelation, we were able to achieve glycerol thermoplastics with high molecular weights (1 MDa). After studying the thermal/mechanical properties of the polymer, it was found that these glycerol polymers had a high degree of tack. When added to wood as an adhesive, it was found that performance was comparable or exceeded standard wood adhesives such as Poly (Methylene diphenyl diisocyanate) (PMDI) and formaldehyde based adhesives. This yields wood adhesives that have less toxicity, lower environmental impact, and higher renewability. 
    more » « less
  3. Abstract Aquaporin (Aqp) 10 is a member of the aquaglyceroporin subfamily of water channels, and human Aqp10 is permeable to solutes such as glycerol, urea, and boric acid. Tetrapods have a single aqp10 gene, whereas ray-finned fishes have paralogs of this gene through tandem duplication, whole-genome duplication, and subsequent deletion. A previous study on Aqps in the Japanese pufferfish Takifugu rubripes showed that one pufferfish paralog, Aqp10.2b, was permeable to water and glycerol, but not to urea and boric acid. To understand the functional differences of Aqp10s between humans and pufferfish from an evolutionary perspective, we analyzed Aqp10s from an amphibian (Xenopus laevis) and a lobe-finned fish (Protopterus annectens) and Aqp10.1 and Aqp10.2 from several ray-finned fishes (Polypterus senegalus, Lepisosteus oculatus, Danio rerio, and Clupea pallasii). The expression of tetrapod and lobe-finned fish Aqp10s and Aqp10.1-derived Aqps in ray-finned fishes in Xenopus oocytes increased the membrane permeabilities to water, glycerol, urea, and boric acid. In contrast, Aqp10.2-derived Aqps in ray-finned fishes increased water and glycerol permeabilities, whereas those of urea and boric acid were much weaker than those of Aqp10.1-derived Aqps. These results indicate that water, glycerol, urea, and boric acid permeabilities are plesiomorphic activities of Aqp10s and that the ray-finned fish-specific Aqp10.2 paralogs have secondarily reduced or lost urea and boric acid permeability. 
    more » « less
  4. Core chlorophytes possess glycerol-3-phosphate dehydrogenases (GPDs) with an unusual bidomain structure, consisting of a glycerol-3-phosphate phosphatase (GPP) domain fused to canonical GPD domains. These plastid-localized enzymes have been implicated in stress responses, being required for the synthesis of glycerol under high salinity and triacylglycerols under nutrient deprivation. However, their regulation under varying environmental conditions is poorly understood. C. reinhardtii transgenic strains expressing constitutively bidomain GPD2 did not accumulate glycerol or triacylglycerols in the absence of any environmental stress. Although the glycerol contents of both wild type and transgenic strains increased significantly upon exposure to high salinity, cycloheximide, an inhibitor of cytoplasmic protein synthesis, abolished this response in the wild type. In contrast, GPD2 transgenic strains were still capable of glycerol accumulation when cultured in medium containing cycloheximide and NaCl. Thus, the pre-existing GPD2 protein appears to become activated for glycerol synthesis upon salt stress. Interestingly, staurosporine, a non-specific inhibitor of protein kinases, prevented this post-translational GPD2 protein activation. Structural modeling analyses suggested that substantial conformational rearrangements, possibly triggered by high salinity, may characterize an active GPD2 GPP domain. Understanding this mechanism(s) may provide insights into the rapid acclimation responses of microalgae to osmotic/salinity stress. 
    more » « less
  5. Abstract Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are archaeal monolayer membrane lipids that can provide a competitive advantage in extreme environments. Here, we identify a radical SAM protein, tetraether synthase (Tes), that participates in the synthesis of GDGTs. Attempts to generate a tes-deleted mutant in Sulfolobus acidocaldarius were unsuccessful, suggesting that the gene is essential in this organism. Heterologous expression of tes homologues leads to production of GDGT and structurally related lipids in the methanogen Methanococcus maripaludis (which otherwise does not synthesize GDGTs and lacks a tes homolog, but produces a putative GDGT precursor, archaeol). Tes homologues are encoded in the genomes of many archaea, as well as in some bacteria, in which they might be involved in the synthesis of bacterial branched glycerol dialkyl glycerol tetraethers. 
    more » « less