Abstract Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropodAllosaurus fragilisand the living crocodylianAlligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi‐arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa. 
                        more » 
                        « less   
                    
                            
                            Neuroanatomy of the crocodylian Tomistoma dowsoni from the Miocene of North Africa provides insights into the evolutionary history of gavialoids
                        
                    
    
            Abstract The interrelationships of the extant crocodyliansGavialis gangeticusandTomistoma schlegeliihave been historically disputed. Whereas molecular analyses indicate a sister taxon relationship between these two gavialoid species, morphological datasets typically placeGavialisas the outgroup to all other extant crocodylians. Recent morphological‐based phylogenetic analyses have begun to resolve this discrepancy, recoveringGavialisas the closest living relative ofTomistoma; however, several stratigraphically early fossil taxa are recovered as closer toGavialisthanTomistoma, resulting in anomalously early divergence timings. As such, additional morphological data might be required to resolve these remaining discrepancies. ‘Tomistoma’dowsoniis an extinct species of gavialoid from the Miocene of North Africa. Utilising CT scans of a near‐complete, referred skull, we reconstruct the neuroanatomy and neurosensory apparatus of ‘Tomistoma’dowsoni. Based on qualitative and quantitative morphometric comparisons with other crocodyliforms, the neuroanatomy of ‘Tomistoma’dowsoniis characterised by an intermediate morphology between the two extant gavialoids, more closely resemblingGavialis. This mirrors the results of recent studies based on the external anatomy of these three species and other fossil gavialoids. Several neuroanatomical features of these species appear to reflect ecological and/or phylogenetic signals. For example, the ‘simple’ morphology of their neurosensory apparatus is broadly similar to that of other long and narrow‐snouted (longirostrine), aquatic crocodyliforms. A dorsoventrally short, anteroposteriorly long endosseous labyrinth is also associated with longirostry. These features indicate that snout and skull morphology, which are themselves partly constrained by ecology, exert an influence on neuroanatomical morphology, as has also been recognised in birds and turtles. Conversely, the presence of a pterygoid bulla inGavialisand several extinct gavialoids, and its absence inTomistoma schlegelii, could be interpreted as a phylogenetic signal of crocodylians more closely related toGavialis than toTomistoma. Evaluation of additional fossil gavialoids will be needed to further test whether these and other neuroanatomical features primarily reflect a phylogenetic or ecological signal. By incorporating such previously inaccessible information of extinct and extant gavialoids into phylogenetic and macroecological studies, we can potentially further constrain the clade's interrelationships, as well as evaluate the timing and ecological association of the evolution of these neuroanatomical features. Finally, our study supports recent phylogenetic analyses that place ‘Tomistoma’dowsonias being phylogenetically closer toGavialis gangeticusthan toTomistoma schlegelii, indicating the necessity of a taxonomic revision of this fossil species. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1902242
- PAR ID:
- 10555482
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Anatomy
- Volume:
- 243
- Issue:
- 1
- ISSN:
- 0021-8782
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Jaw muscles are key features of the vertebrate feeding apparatus. The jaw musculature is housed in the skull whose morphology reflects a compromise between multiple functions, including feeding, housing sensory structures, and defense, and the skull constrains jaw muscle geometry. Thus, jaw muscle anatomy may be suboptimally oriented for the production of bite force. Crocodylians are a group of vertebrates that generate the highest bite forces ever measured with a flat skull suited to their aquatic ambush predatory style. However, basal members of the crocodylian line (e.g.,Prestosuchus) were terrestrial predators with plesiomorphically tall skulls, and thus the origin of modern crocodylians involved a substantial reorganization of the feeding apparatus and its jaw muscles. Here, we reconstruct jaw muscles across a phylogenetic range of crocodylians and fossil suchians to investigate the impact of skull flattening on muscle anatomy. We used imaging data to create 3D models of extant and fossil suchians that demonstrate the evolution of the crocodylian skull, using osteological correlates to reconstruct muscle attachment sites. We found that jaw muscle anatomy in early fossil suchians reflected the ancestral archosaur condition but experienced progressive shifts in the lineage leading to Metasuchia. In early fossil suchians, musculus adductor mandibulae posterior and musculus pterygoideus (mPT) were of comparable size, but by Metasuchia, the jaw musculature is dominated by mPT. As predicted, we found that taxa with flatter skulls have less efficient muscle orientations for the production of high bite force. This study highlights the diversity and evolution of jaw muscles in one of the great transformations in vertebrate evolution.more » « less
- 
            ABSTRACT Metriorhynchoid thalattosuchians were a marine clade of Mesozoic crocodylomorphs that evolved from semi‐aquatic, “gharial”‐like species into the obligately pelagic subclade Metriorhynchidae. To explore whether the sensory and physiological demands of underwater life necessitates a shift in rostral anatomy, both in neurology and vasculature, we investigate the trigeminal innervation and potential somatosensory abilities of metriorhynchoids by digitally segmenting the rostral neurovascular canals in CT scans of 10 extant and extinct crocodyliforms. The dataset includes the terrestrial, basal crocodyliformProtosuchus haughtoni, two semi‐aquatic basal metriorhynchoids, four pelagic metriorhynchids and three extant, semi‐aquatic crocodylians. In the crocodylian and basal metriorhynchoid taxa, we find three main neurovascular channels running parallel to one another posteroanteriorly down the length of the snout, whereas in metriorhynchids there are two, and inP. haughtonionly one. Crocodylians appear to be unique in their extensive trigeminal innervation, which is used to supply the integumentary sensory organs (ISOs) involved with their facial somatosensory abilities. Crocodylians have a far higher number of foramina on the maxillary bones than either metriorhynchoids orP. haughtoni, suggesting that the fossil taxa lacked the somatosensory abilities seen in extant species. We posit that the lack of ISO osteological correlates in metriorhynchoids is due to their basal position in Crocodyliformes, rather than a pelagic adaptation. This is reinforced by the hypothesis that extant crocodyliforms, and possibly some neosuchian clades, underwent a long “nocturnal bottleneck”—hinting that their complex network of ISOs evolved in Neosuchia, as a sensory trade‐off to compensate for poorer eyesight.more » « less
- 
            null (Ed.)Crocodylians are currently facing evolutionary decline. This is evinced by the rich fossil record of their extinct relatives, crocodylomorphs, which show not only significantly higher levels of biodiversity in the past but also remarkable morphological disparity and higher ecological diversity. In terms of body size, crocodylians are mostly large animals (>2m), especially when com-pared to other extant reptiles. In contrast, extinct crocodylomorphs exhibited a 10-fold range in body sizes, with early terrestrial forms often quite small.Recent research has shed new light on the tempo and mode of crocodylomorph body size evolution,demonstrating a close relationship with ecology, in which physiological constraints contribute to the larger sizes of marine species. Abiotic environmental factors can also play an important role with in individual subgroups. Crocodylians, for instance,have been experiencing an average size increase during Cenozoic, which seems to be related to along-term process of global cooling.more » « less
- 
            Abstract Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology’s approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    