We consider synthetic materials consisting of self-coupled identical resonators carrying classical internal degrees of freedom. The architecture of such material is specified by the positions and orientations of the resonators. Our goal is to calculate the smallest C*-algebra that covers the dynamical matrices associated to a fixed architecture and adjustable internal structures. We give the answer in terms of a groupoid C*-algebra that can be canonically associated to a uniformly discrete subset of the group of isometries of the Euclidean space. Our result implies that the isomorphism classes of these C*-algebras split these architected materials into classes containing materials that are identical from the dynamical point of view.
more »
« less
Topological spectral bands with frieze groups
Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.
more »
« less
- PAR ID:
- 10555585
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Journal of Mathematical Physics
- Volume:
- 65
- Issue:
- 6
- ISSN:
- 0022-2488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we introduce a property of topological dynamical systems that we call finite dynamical complexity. For systems with this property, one can in principle compute the K-theory of the associated crossed product C*-algebra by splitting it up into simpler pieces and using the methods of controlled K-theory. The main part of the paper illustrates this idea by giving a new proof of the Baum-Connes conjecture for actions with finite dynamical complexity. We have tried to keep the paper as self-contained as possible: we hope the main part will be accessible to someone with the equivalent of a first course in operator K-theory. In particular, we do not assume prior knowledge of controlled K-theory, and use a new and concrete model for the Baum-Connes conjecture with coefficients that requires no bivariant K-theory to set up.more » « less
-
In this paper, we introduce a property of topological dynamical systems that we call finite dynamical complexity. For systems with this property, one can in principle compute the K-theory of the associated crossed product C*-algebra by splitting it up into simpler pieces and using the methods of controlled K-theory. The main part of the paper illustrates this idea by giving a new proof of the Baum-Connes conjecture for actions with finite dynamical complexity. We have tried to keep the paper as self-contained as possible: we hope the main part will be accessible to someone with the equivalent of a first course in operator K-theory. In particular, we do not assume prior knowledge of controlled K-theory, and use a new and concrete model for the Baum-Connes conjecture with coefficients that requires no bivariant K-theory to set up.more » « less
-
Abstract Topological metals are conducting materials with gapless band structures and nontrivial edge-localized resonances. Their discovery has proven elusive because traditional topological classification methods require band gaps to define topological robustness. Inspired by recent theoretical developments that leverage techniques from the field ofC∗-algebras to identify topological metals, here, we directly observe topological phenomena in gapless acoustic crystals and realize a general experimental technique to demonstrate their topology. Specifically, we not only observe robust boundary-localized states in a topological acoustic metal, but also re-interpret a composite operator—mathematically derived from theK-theory of the problem—as a new Hamiltonian whose physical implementation allows us to directly observe a topological spectral flow and measure the topological invariants. Our observations and experimental protocols may offer insights for discovering topological behaviour across a wide array of artificial and natural materials that lack bulk band gaps.more » « less
-
Abstract Re-configurable materials and meta-materials can jump between space symmetry classes during their deformations. Here, we introduce the concept of singular symmetry enhancement, which refers to an abrupt jump to a higher symmetry class accompanied by an un-avoidable reduction in the number of dispersion bands of the excitations of the material. Such phenomenon prompts closings of some of the spectral resonant gaps along singular manifolds in a parameter space. In this work, we demonstrate that these singular manifolds can carry topological charges. As a concrete example, we show that a deformation of an acoustic crystal that encircles aconfiguration of an array of cavity resonators results in an adiabatic cycle that carries a Chern number in the bulk and displays Thouless pumping at the edges. This points to a very general guiding principle for recognizing cyclic adiabatic processes with high potential for topological pumping in complex materials and meta-materials, which rests entirely on symmetry arguments.more » « less
An official website of the United States government

