skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Sixth-order parabolic equation on an interval: Eigenfunction expansion, Green’s function, and intermediate asymptotics for a finite thin film with elastic resistance
A linear sixth-order partial differential equation (PDE) of “parabolic” type describes the dynamics of thin liquid films beneath surfaces with elastic bending resistance when deflections from the equilibrium film height are small. On a finite domain, the associated sixth-order eigenvalue problem is self-adjoint for the boundary conditions corresponding to a thin film in a closed trough, and the eigenfunctions form a complete orthonormal set. Using these eigenfunctions, we derive the Green’s function for the governing sixth-order PDE on a finite interval and compare it to the known infinite-line solution. Further, we propose a Galerkin spectral method based on the constructed sixth-order eigenfunctions and their derivative expansions. The system of ordinary differential equations for the time-dependent expansion coefficients is solved by standard numerical methods. The numerical approach is applied to versions of the governing PDE with a second-order spatial derivative (in addition to the sixth-order one), which arises from gravity acting on the film. In the absence of gravity, we demonstrate the self-similar intermediate asymptotics of initially localized disturbances on the film surface, at least until the disturbances “feel” the finite boundaries, and show that the derived Green’s function is an attractor for such solutions. In the presence of gravity, we use the proposed Galerkin numerical method to demonstrate that self-similar behavior persists, albeit for shortened intervals of time, even for large values of the gravity-to-bending ratio.  more » « less
Award ID(s):
2029540
PAR ID:
10555599
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Engineering Mathematics
Volume:
150
ISSN:
0022-0833
Page Range / eLocation ID:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Todorov, M D (Ed.)
    Sixth-order boundary value problems (BVPs) arise in thin-film flows with a surface that has elastic bending resistance. To solve such problems, we first derive a complete set of odd and even orthonormal eigenfunctions — resembling trigonometric sines and cosines, as well as the so-called “beam” functions. These functions intrinsically satisfy boundary conditions (BCs) of relevance to thin-film flows, since they are the solutions of a self-adjoint sixth-order Sturm–Liouville BVP with the same BCs. Next, we propose a Galerkin spectral approach for sixth-order problems; namely the sought function as well as all its derivatives and terms appearing in the differential equation are expanded into an infinite series with respect to the derived complete orthonormal (CON) set of eigenfunctions. The unknown coefficients in the series expansion are determined by solving the algebraic system derived by taking successive inner products with each member of the CON set of eigenfunctions. The proposed method and its convergence are demonstrated by solving two model sixth-order BVPs. 
    more » « less
  2. Lorenzis, Laura (Ed.)
    Green’s function characterizes a partial differential equation (PDE) and maps its solution in the entire domain as integrals. Finding the analytical form of Green’s function is a non-trivial exercise, especially for a PDE defined on a complex domain or a PDE with variable coefficients. In this paper, we propose a novel boundary integral network to learn the domain independent Green’s function, referred to as BIN-G. We evaluate the Green’s function in the BIN-G using a radial basis function (RBF) kernel-based neural network. We train the BIN-G by minimizing the residual of the PDE and the mean squared errors of the solutions to the boundary integral equations for prescribed test functions. By leveraging the symmetry of the Green’s function and controlling refinements of the RBF kernel near the singularity of the Green function, we demonstrate that our numerical scheme enables fast training and accurate evaluation of the Green’s function for PDEs with variable coefficients. The learned Green’s function is independent of the domain geometries, forcing terms, and boundary conditions in the boundary integral formulation. Numerical experiments verify the desired properties of the method and the expected accuracy for the two-dimensional Poisson and Helmholtz equations with variable coefficients. 
    more » « less
  3. Fractional evolution equations lack generally accessible and well-converged codes excepting anomalous diffusion. A particular equation of strong interest to the growing intersection of applied mathematics and quantum information science and technology is the fractional Schrödinger equation, which describes sub-and super-dispersive behavior of quantum wavefunctions induced by multiscale media. We derive a computationally efficient sixth-order split-step numerical method to converge the eigenfunctions of the FSE to arbitrary numerical precision for arbitrary fractional order derivative. We demonstrate applications of this code to machine precision for classic quantum problems such as the finite well and harmonic oscillator, which take surprising twists due to the non-local nature of the fractional derivative. For example, the evanescent wave tails in the finite well take a Mittag-Leffer-like form which decay much slower than the well-known exponential from integer-order derivative wave theories, enhancing penetration into the barrier and therefore quantum tunneling rates. We call this effect \emph{fractionally enhanced quantum tunneling}. This work includes an open source code for communities from quantum experimentalists to applied mathematicians to easily and efficiently explore the solutions of the fractional Schrödinger equation in a wide variety of practical potentials for potential realization in quantum tunneling enhancement and other quantum applications. 
    more » « less
  4. This paper is concerned with the PDE (partial differential equation) and numerical analysis of a modified one-dimensional intravascular stent model. It is proved that the modified model has a unique weak solution by using the Galerkin method combined with a compactness argument. A semi-discrete finite-element method and a fully discrete scheme using the Euler time-stepping have been formulated for the PDE model. Optimal order error estimates in the energy norm are proved for both schemes. Numerical results are presented, along with comparisons between different decoupling strategies and time-stepping schemes. Lastly, extensions of the model and its PDE and numerical analysis results to the two-dimensional case are also briefly discussed. 
    more » « less
  5. Adhesive contact between a thin elastic sheet and a substrate arises in a range of biological, physical and technological applications. By considering the dynamics of this process that naturally couples fluid flow, long-wavelength elastic deformations and microscopic adhesion, we analyse a sixth-order thin-film equation for the short-time dynamics of the onset of adhesion and the long-time dynamics of a steadily propagating adhesion front. Numerical solutions corroborate scaling laws and asymptotic analyses for the characteristic waiting time for adhesive contact and for the speed of the adhesion front. A similarity analysis of the governing partial differential equation further allows us to determine the shape of a fluid-filled blister ahead of the adhesion front. Finally, our analysis reveals a near-singular behaviour at the moving elastohydrodynamic contact line with an effective boundary condition that might be useful in other related problems. 
    more » « less