skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Multiscale Quantum Media: High-Precision Efficient Numerical Solution of the Fractional Schrödinger equation, Eigenfunctions with Physical Potentials, and Fractionally-Enhanced Quantum Tunneling
Fractional evolution equations lack generally accessible and well-converged codes excepting anomalous diffusion. A particular equation of strong interest to the growing intersection of applied mathematics and quantum information science and technology is the fractional Schrödinger equation, which describes sub-and super-dispersive behavior of quantum wavefunctions induced by multiscale media. We derive a computationally efficient sixth-order split-step numerical method to converge the eigenfunctions of the FSE to arbitrary numerical precision for arbitrary fractional order derivative. We demonstrate applications of this code to machine precision for classic quantum problems such as the finite well and harmonic oscillator, which take surprising twists due to the non-local nature of the fractional derivative. For example, the evanescent wave tails in the finite well take a Mittag-Leffer-like form which decay much slower than the well-known exponential from integer-order derivative wave theories, enhancing penetration into the barrier and therefore quantum tunneling rates. We call this effect \emph{fractionally enhanced quantum tunneling}. This work includes an open source code for communities from quantum experimentalists to applied mathematicians to easily and efficiently explore the solutions of the fractional Schrödinger equation in a wide variety of practical potentials for potential realization in quantum tunneling enhancement and other quantum applications.  more » « less
Award ID(s):
2125899
PAR ID:
10554160
Author(s) / Creator(s):
;
Publisher / Repository:
arXiv
Date Published:
Format(s):
Medium: X
Institution:
Colorado School of Mines
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multi-dimensional direct numerical simulation (DNS) of the Schrödinger equation is needed for design and analysis of quantum nanostructures that offer numerous applications in biology, medicine, materials, electronic/photonic devices, etc. In large-scale nanostructures, extensive computational effort needed in DNS may become prohibitive due to the high degrees of freedom (DoF). This study employs a physics-based reduced-order learning algorithm, enabled by the first principles, for simulation of the Schrödinger equation to achieve high accuracy and efficiency. The proposed simulation methodology is applied to investigate two quantum-dot structures; one operates under external electric field, and the other is influenced by internal potential variation with periodic boundary conditions. The former is similar to typical operations of nanoelectronic devices, and the latter is of interest to simulation and design of nanostructures and materials, such as applications of density functional theory. In each structure, cases within and beyond training conditions are examined. Using the proposed methodology, a very accurate prediction can be realized with a reduction in the DoF by more than 3 orders of magnitude and in the computational time by 2 orders, compared to DNS. An accurate prediction beyond the training conditions, including higher external field and larger internal potential in untrained quantum states, is also achieved. Comparison is also carried out between the physics-based learning and Fourier-based plane-wave approaches for a periodic case. 
    more » « less
  2. Abstract A population of compact object binaries emitting gravitational waves that are not individually resolvable will form a stochastic gravitational-wave signal. While the expected spectrum over population realizations is well known from Phinney, its higher-order moments have not been fully studied before or computed in the case of arbitrary binary evolution. We calculate analytic scaling relationships as a function of gravitational-wave frequency for the statistical variance, skewness, and kurtosis of a stochastic gravitational-wave signal over population realizations due to finite source effects. If the time derivative of the binary orbital frequency can be expressed as a power law in frequency, we find that these moment quantities also take the form of power-law relationships. We also develop a numerical population synthesis framework against which we compare our analytic results, finding excellent agreement. These new scaling relationships provide physical context to understanding spectral fluctuations in a gravitational-wave background signal and may provide additional information that can aid in explaining the origin of the nanohertz-frequency signal observed by pulsar timing array campaigns. 
    more » « less
  3. Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity p o l y ( 1 / ϵ ) , where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be p o l y ( d , log ⁡ ( 1 / ϵ ) ) , where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations. 
    more » « less
  4. Trélat, E.; Zuazua, E. (Ed.)
    This chapter provides a brief review of recent developments on two nonlocal operators: fractional Laplacian and fractional time derivative. We start by accounting for several applications of these operators in imaging science, geophysics, harmonic maps, and deep (machine) learning. Various notions of solutions to linear fractional elliptic equations are provided and numerical schemes for fractional Laplacian and fractional time derivative are discussed. Special emphasis is given to exterior optimal control problems with a linear elliptic equation as constraints. In addition, optimal control problems with interior control and state constraints are considered. We also provide a discussion on fractional deep neural networks, which is shown to be a minimization problem with fractional in time ordinary differential equation as constraint. The paper concludes with a discussion on several open problems. 
    more » « less
  5. Solving the time-dependent Schrödinger equation is an important application area for quantum algorithms. We consider Schrödinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter ℏ , in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schrödinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of ℏ and the precision ε are obtained. It is found that the number of required qubits, m , scales only logarithmically with respect to ℏ . When the solution has bounded derivatives up to order ℓ , the symmetric Trotting method has gate complexity O ( ( ε ℏ ) − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 − 1 2 ℓ ) ) , provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with p o l y ( m ) operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of ℏ . The gate complexity in this case is reduced to O ( ε − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 ) ) , with ℓ again indicating the smoothness of the solution. 
    more » « less