Virtual reality is a powerful tool for teaching 3D digital technologies in building engineering, as it facilitates the spatial perception of three-dimensional space. Spatial orientation skill is necessary for understanding 3D space. With VR, users navigate through virtually designed buildings and must be constantly aware of their position relative to other elements of the environment (orientation during navigation). In the present study, 25 building engineering students performed navigation tasks in a desktop-VR environment workshop. Performance of students using the desktop-VR was compared to a previous workshop in which navigation tasks were carried out using head-mounted displays. The Perspective Taking/Spatial Orientation Test measured spatial orientation skill. A questionnaire on user experience in the virtual environment was also administered. The gain in spatial orientation skill was 12.62%, similar to that obtained with head-mounted displays (14.23%). The desktop VR environment is an alternative to the HMD-VR environment for planning strategies to improve spatial orientation. Results from the user-experience questionnaire showed that the desktop VR environment strategy was well perceived by students in terms of interaction, 3D visualization, navigation, and sense of presence. Unlike in the HDM VR environment, student in the desktop VR environment did not report feelings of fatigue or dizziness.
more »
« less
Evaluating Navigation and Comparison Performance of Computational Notebooks on Desktop and in Virtual Reality
The computational notebook serves as a versatile tool for data analysis. However, its conventional user interface falls short of keeping pace with the ever-growing data-related tasks, signaling the need for novel approaches. With the rapid development of interaction techniques and computing environments, there is a growing interest in integrating emerging technologies in data-driven workflows. Virtual reality, in particular, has demonstrated its potential in interactive data visualizations. In this work, we aimed to experiment with adapting computational notebooks into VR and verify the potential benefits VR can bring. We focus on the navigation and comparison aspects as they are primitive components in analysts' workflow. To further improve comparison, we have designed and implemented a Branching&Merging functionality. We tested computational notebooks on the desktop and in VR, both with and without the added Branching&Merging capability. We found VR significantly facilitated navigation compared to desktop, and the ability to create branches enhanced comparison.
more »
« less
- Award ID(s):
- 1822080
- PAR ID:
- 10555607
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703300
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
-
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
An official website of the United States government

