Typical Meteorological Year (TMY) datasets, widely used in building energy modeling, overlook Urban Heat Island (UHI) effects and future climate trends by relying on long-term data from rural stations such as airports. This study addresses this limitation by integrating Urban Weather Generator (UWG) simulations with CCWorldWeatherGen projections to produce microclimate-adjusted and future weather scenarios. These datasets were then incorporated into an Urban Building Energy Modeling (UBEM) framework using Urban Modeling Interface (UMI) to evaluate energy performance across a lowincome residential neighborhood in Des Moines, Iowa. Results show that UHI intensity will rise from an annual average of 0.55 °C under current conditions to 0.60 °C by 2050 and 0.63 °C by 2080, with peak intensities in summer. The UHI elevates cooling Energy Use Intensity (EUI) by 7% today, with projections indicating a sharp increase—91% by 2050 and 154% by 2080. The UHI will further amplify cooling demand by 2.3% and 6.2% in 2050 and 2080, respectively. Conversely, heating EUI will decline by 20.0% by 2050 and 40.1% by 2080, with the UHI slightly reducing heating demand. Insulation mitigates cooling loads but becomes less effective for heating demand over time. These findings highlight the need for climate-adaptive policies, building retrofits, and UHI mitigation to manage future cooling demand. 
                        more » 
                        « less   
                    
                            
                            Comparative Analysis of Urban Heat Island Effects on Building Energy Consumption in the U.S. Midwest: A combined workflow using Urban Weather Generator and Future Typical Meteorological Year Climate Scenarios
                        
                    
    
            Urban areas often experience higher air temperatures than their surrounding rural counterparts, a phenomenon known as the urban heat island (UHI) effect. This significant human-induced alteration of urban microclimates has notable consequences, especially on urban energy consumption and resulting economic implications. This study presents an in-depth analysis of the UHI effect on urban building energy consumption in a US Midwest neighbourhood. Utilizing a three-phase methodology, the research first simulated UHI intensities with current and future Typical Meteorological Year (TMY) data, integrated with the Local Climate Zone (LCZ) classification system and the Urban Weather Generator (UWG) model. The second phase employed the urban modelling interface (umi) for building energy simulation, capturing the UHI impact on both residential and commercial buildings. The third phase demonstrates that UHI effects lead to reduced heating demand but increased cooling requirements in the future, with residential areas being more affected. The study's findings reveal critical challenges for urban planners and policymakers, emphasizing the need for sustainable designs to address fluctuating heating and cooling demands in changing climates. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10555687
- Publisher / Repository:
- Wrocław University of Science and Technology Publishing House
- Date Published:
- ISBN:
- 978-83-7493-275-2
- Subject(s) / Keyword(s):
- Urban Heat Island, Local Climate Zones, Urban Weather Generator, Urban Modelling Interface, Building Energy Consumption
- Format(s):
- Medium: X
- Location:
- Wrocław Poland
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Among various elements of urban infrastructure, there is significant opportunity to improve existing buildings’ sustainability, considering that approximately 40% of the total primary energy consumption and 72% of electricity consumption in United States is consumed by the building sector. Many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods serve the role of supporting this effort, by enabling the identification of the potential savings associated with different potential retrofit strategies. However there are many uncertainties that can impact the accuracy of energy model results, one of which is the weather input data. Measured weather data inputs located at each building can help address this concern, however, weather station data collection for each building is also costly and typically not feasible. Some weather station data is already collected, however, these are generally located at airports rather than near buildings, and thus do not capture local, spatially-varying weather conditions which are documented to occur, particularly in urban areas. In this study we address the impact of spatial temperature differences on residential building energy use. An energy model was developed in EnergyPlus for a residential building located in Mueller neighborhood of Austin, TX, and was validated using actual hourly measured electricity consumption. Using the validated model, the impact of measured spatial temperature differences on building energy consumption were investigated using multiple weather stations located throughout the urban area with different urban fractions. The results indicate that energy consumption of a residential building in a city with a 10% higher urban fraction would increase by approximately 10%. This variation in energy consumption is likely due to the impact of UHI effects occurring in urban areas with high densities.more » « less
- 
            Many researchers have studied the roles of building envelope materials on UHI, such as roofs, and walls, but few of them have explored the impacts of the emergence of the solar-reflective coatings, films, and panels but well-visible transmittance that is increasingly applied to glazed building facades, especially in hot climates, for outdoor thermal environments. The question then arises: Despite the positive effects of these strong solar-reflective facades on building heating and cooling energy savings, do they have the same positive effects on the adjacent outdoor area, especially in a dense urban context? This research aims to quantify the potential UHI effects of the solar-reflective facades relative to the non-reflective ones in a dense urban context, along with the heating and cooling energy performance analysis. As such, a simulation method in terms of a series of tools including LBNL Radiance, EnergyPlus, and WINDOW software was adopted in this work to analyze the solar radiation interactions between the façade surface and the surrounding urban structures and potential temperature rise under solar-reflective and non-reflective facades. The result shows that the annual cooling energy savings by using the solar-reflective facades are about 33.8% relative to the typical double-pane clear glazed façade because of the substantial reduction of U-factor and solar heat gains; But, this preliminary work also unveils the potential adverse effects of using such materials at the urban scale, leading nearly 2 times greater solar irradiation and UHI effects than the ones by the solar-non-reflective building surfaces in an urban area. Future optimization studies on the trade-off between the building cooling energy savings and UHI effects by the solar-reflective façades need to be conducted.more » « less
- 
            The U.S. Department of Energy (DOE) offers building reference prototypes for energy use modeling in commercial and residential buildings. However, these reference prototypes have traditionally been treated in isolation, neglecting the impact of neighboring objects on local microclimate. In urban energy models, where the intricate interaction of urban elements significantly shapes environmental conditions, it becomes more important to reconsider the conventional treatment of building reference prototypes. In this paper we aim to discern potential disparities in energy consumption estimations using DOE prototypes at an urban scale. The Urban Modeling Interface (UMI) was chosen as the simulation platform to incorporate the shadow effect from neighboring objects on building energy use across six scenarios with different shadow coverage by neighboring objects. We found that trees as neighboring structures can decrease cooling load by up to 29%. These results highlight the importance of considering the urban context in energy use estimation of buildings.more » « less
- 
            Abstract Continued climate change is increasing the frequency, severity, and duration of populations’ high temperature exposures. Indoor cooling is a key adaptation, especially in urban areas, where heat extremes are intensified—the urban heat island effect (UHI)—making residential air conditioning (AC) availability critical to protecting human health. In the United States, the differences in residential AC prevalence from one metropolitan area to another is well understood, but its intra-urban variation is poorly characterized, obscuring neighborhood-scale variability in populations’ heat vulnerability and adaptive capacity. We address this gap by constructing empirically derived probabilities of residential AC for 45,995 census tracts across 115 metropolitan areas. Within cities, AC is unequally distributed, with census tracts in the urban “core” exhibiting systematically lower prevalence than their suburban counterparts. Moreover, this disparity correlates strongly with multiple indicators of social vulnerability and summer daytime surface UHI intensity, highlighting the challenges that vulnerable urban populations face in adapting to climate-change driven heat stress amplification.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    