skip to main content


This content will become publicly available on May 18, 2025

Title: Addressing the need for microclimate considerations in DOE reference building prototypes for urban energy simulation with a focus on urban shadow effects.
The U.S. Department of Energy (DOE) offers building reference prototypes for energy use modeling in commercial and residential buildings. However, these reference prototypes have traditionally been treated in isolation, neglecting the impact of neighboring objects on local microclimate. In urban energy models, where the intricate interaction of urban elements significantly shapes environmental conditions, it becomes more important to reconsider the conventional treatment of building reference prototypes. In this paper we aim to discern potential disparities in energy consumption estimations using DOE prototypes at an urban scale. The Urban Modeling Interface (UMI) was chosen as the simulation platform to incorporate the shadow effect from neighboring objects on building energy use across six scenarios with different shadow coverage by neighboring objects. We found that trees as neighboring structures can decrease cooling load by up to 29%. These results highlight the importance of considering the urban context in energy use estimation of buildings.  more » « less
Award ID(s):
1855902
NSF-PAR ID:
10517634
Author(s) / Creator(s):
; ;
Publisher / Repository:
IBPSA-USA
Date Published:
Journal Name:
Proceedings of the International Building Performance Simulation Association
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hot temperatures drive excessive energy use for space-cooling in built environments. In a building, a system operator could save costs by making better decisions under the uncertainties associated with urban temperature and future energy demands. In this paper, we assess the impact of urban weather modeling on energy cost, using a value of information (VoI) analysis, in a day-ahead (DA) electricity market. To do that, we combine two probabilistic models: (a) a model for forecasting urban temperature and (b) a model for forecasting hourly net electric load of a building given ambient urban temperature. We then quantify the impact of better urban weather modeling by propagating the uncertainty from the temperature model to the load forecasting model. We perform a numerical case study on residential building prototypes located in the city of Pittsburgh. The result indicates that using a better weather model could save 4.34-8.22% of the electricity costs for space-cooling. 
    more » « less
  2. Among various elements of urban infrastructure, there is significant opportunity to improve existing buildings’ sustainability, considering that approximately 40% of the total primary energy consumption and 72% of electricity consumption in United States is consumed by the building sector. Many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods serve the role of supporting this effort, by enabling the identification of the potential savings associated with different potential retrofit strategies. However there are many uncertainties that can impact the accuracy of energy model results, one of which is the weather input data. Measured weather data inputs located at each building can help address this concern, however, weather station data collection for each building is also costly and typically not feasible. Some weather station data is already collected, however, these are generally located at airports rather than near buildings, and thus do not capture local, spatially-varying weather conditions which are documented to occur, particularly in urban areas. In this study we address the impact of spatial temperature differences on residential building energy use. An energy model was developed in EnergyPlus for a residential building located in Mueller neighborhood of Austin, TX, and was validated using actual hourly measured electricity consumption. Using the validated model, the impact of measured spatial temperature differences on building energy consumption were investigated using multiple weather stations located throughout the urban area with different urban fractions. The results indicate that energy consumption of a residential building in a city with a 10% higher urban fraction would increase by approximately 10%. This variation in energy consumption is likely due to the impact of UHI effects occurring in urban areas with high densities. 
    more » « less
  3. Successful urban systems-related climate-action-support tools enable urban stakeholders to communicate and collaborate across and beyond their respective disciplines to identify innovative, transformative solutions to increase urban infrastructure resilience and sustainability. The actions of humans within buildings and the relationship of buildings to their near-building environments (aka microclimate) constitute one understudied urban system with significant impact on urban energy use strongly impacted by a warming urban climate. This interdisciplinary research team lead by an architect at a large research university collaborates with local community partners to identify evidence-based approaches for the integration of human behavior data, building energy use characteristics, future climate scenarios, and near-building microclimate data. The team has built a prototypical model, which integrates urban trees into urban energy models based on a large-scale inventory and probabilistic occupancy data based on a neighborhood wide energy use survey. To ensure that these urban energy models are equitable, however, the needs of marginalized populations must be included- especially those most vulnerable to the consequences of a changing climate. The paper reports on two intertwined research strands. First of all, the team’s best practices for gathering data from individuals facing marginalization as well as the application of this residential occupancy data into neighborhood energy models. The second strand addresses trees in urban landscapes and their capacity to modify temperatures in the near-building environment, which is important for reducing summer heat loads on building surfaces. Preliminary results for an urban neighborhood strategies are reported. 
    more » « less
  4. Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas. 
    more » « less
  5. Modeling and designing urban building layouts is of significant interest in computer vision, computer graphics, and urban applications. A building layout consists of a set of buildings in city blocks defined by a network of roads. We observe that building layouts are discrete structures, consisting of multiple rows of buildings of various shapes, and are amenable to skeletonization for mapping arbitrary city block shapes to a canonical form. Hence, we propose a fully automatic approach to building layout generation using graph attention networks. Our method generates realistic urban layouts given arbitrary road networks, and enables conditional generation based on learned priors. Our results, including user study, demonstrate superior performance as compared to prior layout generation networks, support arbitrary city block and varying building shapes as demonstrated by generating layouts for 28 large cities. 
    more » « less