skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hemisphere-Dependent Impacts of ENSO and Atmospheric Eddies on Hadley Circulation
Abstract The variability of the Hadley circulation strength (HCS), crucial to tropical climate variability, is attributed to both oceanic and atmospheric forcings. El Niño–Southern Oscillation (ENSO) and variations in the extratropical upper-tropospheric eddies are the known drivers of the interannual HCS variability. However, the relative contributions of these oceanic and atmospheric forcings to the hemispheric HCS variability are not well understood. In particular, how much anomalous wind stress–driven ocean dynamics, including ENSO, impact HCS variability remains an open question. To address these gaps, we investigate the drivers of the interannual HCS variability using global coupled model experiments that include or exclude anomalous wind stress–driven ocean circulation variability. We find that the anomalous wind stress–driven ocean circulation variability significantly amplifies HCS variability in the Southern Hemisphere (SH). ENSO is the leading modulator of the SH HCS variability, which offers the potential to improve the predictability of Hadley circulation (HC)–related hydrological consequences. On the other hand, the Northern Hemisphere (NH) HCS variability is predominantly influenced by the eddy-driven internal atmospheric variability with little role in ocean dynamics. We hypothesize that the large eddy variability in the NH and concentrated ENSO-associated heating and precipitation in the SH lead to the hemisphere-dependent differences in the interannual HCS variability.  more » « less
Award ID(s):
1951713
PAR ID:
10555757
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
24
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 6533-6548
Size(s):
p. 6533-6548
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Key questions remain about the atmospheric response to variability in the oceanic western boundary currents (WBCs). Here we exploit a unique high‐resolution slab‐ocean coupled climate model to investigate how ocean heat transport (OHT) anomalies in the major WBCs of both hemispheres affect the atmospheric circulation. Prescribed OHT anomalies lead to robust changes in convective precipitation anomalies equatorward of the maximum surface warming. The response is deepest and most pronounced over the Northern Hemisphere (NH) WBCs, where it is associated with significant changes in upper tropospheric vertical motion, condensational heating and geopotential heights. The response is relatively shallow over the Southern Hemisphere (SH) WBCs. The findings reveal the robustness of the atmospheric response to OHT anomalies and highlight key hemispheric differences: in the NH, OHT anomalies are balanced by deep atmospheric vertical motion; in the SH, they are balanced primarily by shallow horizontal temperature advection. 
    more » « less
  2. null (Ed.)
    Abstract Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability. 
    more » « less
  3. Abstract As the leading mode of Pacific variability, El Niño–Southern Oscillation (ENSO) causes vast and widespread climatic impacts, including in the stratosphere. Following discovery of a stratospheric pathway of ENSO to the Northern Hemisphere surface, here we aim to investigate if there is a substantial Southern Hemisphere (SH) stratospheric pathway in relation to austral winter ENSO events. Large stratospheric anomalies connected to ENSO occur on average at high SH latitudes as early as August, peaking at around 10 hPa. An overall colder austral spring Antarctic stratosphere is generally associated with the warm phase of the ENSO cycle, and vice versa. This behavior is robust among reanalysis and six separate model ensembles encompassing two different model frameworks. A stratospheric pathway is identified by separating ENSO events that exhibit a stratospheric anomaly from those that do not and comparing to stratospheric extremes that occur during neutral ENSO years. The tropospheric eddy-driven jet response to the stratospheric ENSO pathway is the most robust in the spring following a La Niña, but extends into summer, and is more zonally symmetric compared to the tropospheric ENSO teleconnection. The magnitude of the stratospheric pathway is weaker compared to the tropospheric pathway and therefore, when it is present, has a secondary role. For context, the magnitude is approximately half that of the eddy-driven jet modulation due to austral spring ozone depletion in the model simulations. This work establishes that the stratospheric circulation acts as an intermediary in coupling ENSO variability to variations in the austral spring and summer tropospheric circulation. 
    more » « less
  4. Abstract Circulation in the Southern Ocean is unique. The strong wind stress forcing and buoyancy fluxes, in concert with the lack of continental boundaries, conspire to drive the Antarctic Circumpolar Current replete with an intense eddy field. The effect of Southern Ocean eddies on the ocean circulation is significant—they modulate the momentum balance of the zonal flow, and the meridional transport of tracers and mass. The strength of the eddy field is controlled by a combination of forcing (primarily thought to be wind stress) and intrinsic, chaotic, variability associated with the turbulent flow field itself. Here, we present results from an eddy‐permitting ensemble of ocean model simulations to investigate the relative contribution of forced and intrinsic processes in governing the variability of Southern Ocean eddy kinetic energy. We find that variations of the eddy field are mostly random, even on longer (interannual) timescales. Where correlations between the wind stress forcing and the eddy field exist, these interactions are dominated by two distinct timescales—a fast baroclinic instability response; and a multi‐year process owing to feedback between bathymetry and the mean flow. These results suggest that understanding Southern Ocean eddy dynamics and its larger‐scale impacts requires an ensemble approach to eliminate intrinsic variability, and therefore may not yield robust conclusions from observations alone. 
    more » « less
  5. This study investigates the variability of water mass transformation (WMT) within the Weddell Gyre (WG). The WG serves as a pivotal site for the meridional overturning circulation (MOC) and ocean ventilation because it is the primary origin of the largest volume of water mass in the global ocean, Antarctic Bottom Water (AABW). Recent mooring data suggest substantial seasonal and interannual variability of AABW properties exiting the WG, and studies have linked the variability to the large-scale climate forcings affecting wind stress in the WG region. However, the specific thermodynamic mechanisms that link variability in surface forcings to variability in water mass transformations and AABW export remain unclear. This study explores WMT variability via WMT volume budgets derived from Walin’s classic WMT framework, using three state-of-the-art, data-assimilating ocean reanalyses: Estimating the Circulation and Climate of the Ocean state estimate (ECCOv4), Southern Ocean State Estimate (SOSE) and Simple Ocean Data Assimilation (SODA). From the model outputs, we diagnose a closed form of the water mass budget for AABW that explicitly accounts for transport across the WG boundary, surface forcing, interior mixing, and numerical mixing. We examine the annual mean climatology of the WMT budget terms, the seasonal climatology, and finally the interannual variability. In ECCO and SOSE, we see strong interannual variability in AABW volume budget. In SOSE, we find an accelerating loss of AABW, driven largely by interior mixing and changes in surface salt fluxes. ECCO shows a similar trend during a 3-yr time period beyond what is covered in SOSE, but also reveals such trends to be part of interannual variability over a much longer time period. Overall, ECCO provides the most useful timeseries for understanding the processes and mechanisms that drive WMT and export variability. SODA, in contrast, displays unphysically large variability in AABW volume, which we attribute to its data assimilation scheme. We examine correlations between the WMT budgets and large-scale climate indices, including ENSO and SAM; no strong relationships emerge, suggesting that these reanalysis products may not reproduce the AABW export pathways and mechanisms hypothesized from observations. 
    more » « less