skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Early screening of colorectal cancer using feature engineering with artificial intelligence-enhanced analysis of nanoscale chromatin modifications
Abstract Colonoscopy is accurate but inefficient for colorectal cancer (CRC) prevention due to the low (~ 7 to 8%) prevalence of target lesions, advanced adenomas. We leveraged rectal mucosa to identify patients who harbor CRC field carcinogenesis by evaluating chromatin 3D architecture. Supranucleosomal disordered chromatin chains (~ 5 to 20 nm, ~1 kbp) fold into chromatin packing domains (~ 100 to 200 nm, ~ 100 to 1000 kbp). In turn, the fractal-like conformation of DNA within chromatin domains and the folding of the genome into packing domains has been shown to influence multiple facets of gene transcription, including the transcriptional plasticity of cancer cells. We deployed an optical spectroscopic nanosensing technique, chromatin-sensitive partial wave spectroscopic microscopy (csPWS), to evaluate the packing density scaling D of the chromatin chain conformation within packing domains from rectal mucosa in 256 patients with varying degrees of progression to colorectal cancer. We found average packing scaling D of chromatin domains was elevated in tumor cells, histologically normal-appearing cells 4 cm proximal to the tumor, and histologically normal-appearing rectal mucosa compared to cells from control patients (p < 0.001). Nuclear D had a robust correlation with the model of 5-year risk of CRC with r2 = 0.94. Furthermore, rectal D was evaluated as a screening biomarker for patients with advanced adenomas presenting an AUC of 0.85 and 85% sensitivity and specificity. artificial intelligence-enhanced csPWS improved diagnostic performance with AUC = 0.90. Considering the low sensitivity of existing CRC tests, including liquid biopsies, to early-stage cancers our work highlights the potential of chromatin biomarkers of field carcinogenesis in detecting early, significant precancerous colon lesions.  more » « less
Award ID(s):
1830961
PAR ID:
10555927
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Portfolio
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kazuhiro Maeshima (Ed.)
    Abstract Supranucleosomal chromatin structure, including chromatin domain conformation, is involved in the regulation of gene expression and its dysregulation has been associated with carcinogenesis. Prior studies have shown that cells in the buccal mucosa carry a molecular signature of lung cancer among the cigarette-smoking population, the phenomenon known as field carcinogenesis or field of injury. Thus, we hypothesized that chromatin structural changes in buccal mucosa can be predictive of lung cancer. However, the small size of the chromatin chain (approximately 20 nm) folded into chromatin packing domains, themselves typically below 300 nm in diameter, preclude the detection of alterations in intradomain chromatin conformation using diffraction-limited optical microscopy. In this study, we developed an optical spectroscopic statistical nanosensing technique to detect chromatin packing domain changes in buccal mucosa as a lung cancer biomarker: chromatin-sensitive partial wave spectroscopic microscopy (csPWS). Artificial intelligence (AI) was applied to csPWS measurements of chromatin alterations to enhance diagnostic performance. Our AI-enhanced buccal csPWS nanocytology of 179 patients at two clinical sites distinguished Stage-I lung cancer versus cancer-free controls with an area under the ROC curve (AUC) of 0.92 ± 0.06 for Site 1 (in-state location) and 0.82 ± 0.11 for Site 2 (out-of-state location). 
    more » « less
  2. Background: Colorectal cancer (CRC) is a term that refers to the combination of colon and rectal cancer as they are being treated as a single tumor. In CRC, 72% of tumors are colon cancer, while the other 28% represent rectal cancer. CRC is a multifactorial disease caused by both genetic and epigenetic changes in the colon mucosal cells, affecting the oncogenes, DNA repair genes, and tumor suppressor genes. Currently, two DNA methylation-based biomarkers for CRC have received FDA approval: SEPT9, used in blood-based screening tests, and a combination of NDRG4 and BMP3 for stool-based tests. Although DNA methylation biomarkers have been explored in colorectal cancer (CRC), the identification of robust and clinically valuable biomarkers remains a challenge, particularly for early-stage detection and precancerous lesions. Patients often receive diagnoses at the locally advanced stage, which limits the potential utility of current biomarkers in clinical settings. Methods: The datasets used in this study were retrieved from the GEO database, specifically GSE75548 and GSE75546 for rectal cancer and GSE50760 and GSE101764 for colon cancer, summing up to a total of 130 paired samples. These datasets represent expression profiling by array, methylation profiling by genome tiling array, and expression profiling by high-throughput sequencing and include rectal and colon cancer samples paired with adjacent normal tissue samples. Differential analysis was used to identify differentially methylated CPG sites (DMCs) and identify differentially expressed genes (DEGs). Results: From the integration of DMCs with DEGs in colorectal cancer, we identified 150 candidates for methylation-regulated genes (MRGs) with two genes common across all cohorts (GNG7 and PDX1) highlighted as candidate biomarkers in CRC. The functional enrichment analysis and protein–protein interactions (PPIs) identified relevant pathways involved in CRC, including the Wnt signaling pathway, extracellular matrix (ECM) organization, among other enriched pathways. Conclusions: Our findings show the strength of our in silco computational approach in jointly identifying methylation-regulated biomarkers for colon cancer and highlight several genes and pathways as biomarker candidates for further investigations. 
    more » « less
  3. Three-dimensional supranucleosomal chromatin packing plays a profound role in modulating gene expression by regulating transcription reactions through mechanisms such as gene accessibility, binding affinities, and molecular diffusion. Here, we use a computational model that integrates disordered chromatin packing (CP) with local macromolecular crowding (MC) to study how physical factors, including chromatin density, the scaling of chromatin packing, and the size of chromatin packing domains, influence gene expression. We computationally and experimentally identify a major role of these physical factors, specifically chromatin packing scaling, in regulating phenotypic plasticity, determining responsiveness to external stressors by influencing both intercellular transcriptional malleability and heterogeneity. Applying CPMC model predictions to transcriptional data from cancer patients, we identify an inverse relationship between patient survival and phenotypic plasticity of tumor cells. 
    more » « less
  4. There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer. 
    more » « less
  5. This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG’s rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a “smart” enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The “smart” eNPs–EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs–EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs–EUG is a promising strategy for innovative anti-metastatic therapeutics. 
    more » « less