skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Scoring Rules for Multi-dimensional Effort
This paper develops a framework for the design of scoring rules to optimally incentivize an agent to exert a multi-dimensional effort. This framework is a generalization to strategic agents of the classical knapsack problem (cf. Briest, Krysta, and Vocking, 2005; Singer, 2010) and it is foundational to applying algorithmic mechanism design to the classroom. The paper identifies two simple families of scoring rules that guarantee constant approximations to the optimal scoring rule. The truncated separate scoring rule is the sum of single dimensional scoring rules that is truncated to the bounded range of feasible scores. The threshold scoring rule gives the maximum score if reports exceed a threshold and zero otherwise. Approximate optimality of one or the other of these rules is similar to the bundling or selling separately result of Babaioff, Immorlica, Lucier, and Weinberg (2014). Finally, we show that the approximate optimality of the best of those two simple scoring rules is robust when the agent’s choice of effort is made sequentially.  more » « less
Award ID(s):
2229162
PAR ID:
10555944
Author(s) / Creator(s):
; ; ;
Editor(s):
Neu, Gergely; Rosasco, Lorenzo
Publisher / Repository:
Proceedings of Thirty Sixth Conference on Learning Theory
Date Published:
Volume:
195
ISSN:
1938-7228
Page Range / eLocation ID:
2624-2650
Subject(s) / Keyword(s):
Scoring rules mechanism design loss functions
Format(s):
Medium: X
Location:
Bangalore, India
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the design of core-selecting payment rules for combinatorial auctions, a challenging setting where no strategyproof rules exist. We show that the rule most commonly used in practice, the Quadratic rule, can be improved on in terms of efficiency, incentives, and revenue. We present a new computational search framework for finding good mechanisms, and we apply it toward a search for good core-selecting rules. Within our framework, we use an algorithmic Bayes–Nash equilibrium solver to evaluate 366 rules across 31 settings to identify rules that outperform the Quadratic rule. Our main finding is that our best-performing rules are large-style rules—that is, they provide bidders with large values with better incentives than does the Quadratic rule. Finally, we identify two particularly well-performing rules and suggest that they may be considered for practical implementation in place of the Quadratic rule. 
    more » « less
  2. Using ground-state and relative-entropy based inverse design strategies, isotropic interactions with an attractive well are determined to stabilize and promote assembly of particles into two-dimensional square, honeycomb, and kagome lattices. The design rules inferred from these results are discussed and validated in the discovery of interactions that favor assembly of the highly open truncated-square and truncated-hexagonal lattices. 
    more » « less
  3. With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD. 
    more » « less
  4. We investigate the problem of identifying the optimal scoring rule within the principal-agent framework for online information acquisition problem. We focus on the principal's perspective, seeking to determine the desired scoring rule through interactions with the agent. To address this challenge, we propose two algorithms: OIAFC and OIAFB, tailored for fixed confidence and fixed budget settings, respectively. Our theoretical analysis demonstrates that OIAFC can extract the desired $$(\epsilon,\delta)$$-scoring rule with an efficient instance-dependent sample complexity or an instance-independent sample complexity. Our analysis also shows that OIAFB matches the instance-independent performance bound of OIAFC, while both algorithms share the same complexity across fixed confidence and fixed budget settings. 
    more » « less
  5. An important question in elections is determining whether a candidate can be a winner when some votes are absent. We study this determining winner with absent votes (WAV) problem with elections that take top-truncated ballots. We show that the WAV problem is NP-complete for single transferable vote, Maximin, and Copeland, and propose a special case of positional scoring rule such that the problem can be computed in polynomial time. Our results for top-truncated rankings differ from the results in full rankings as their hardness results still hold when the number of candidates or the number of missing votes are bounded, while we show that the problem can be solved in polynomial time in either case. 
    more » « less