The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.
more »
« less
Design of two-dimensional particle assemblies using isotropic pair interactions with an attractive well
Using ground-state and relative-entropy based inverse design strategies, isotropic interactions with an attractive well are determined to stabilize and promote assembly of particles into two-dimensional square, honeycomb, and kagome lattices. The design rules inferred from these results are discussed and validated in the discovery of interactions that favor assembly of the highly open truncated-square and truncated-hexagonal lattices.
more »
« less
- Award ID(s):
- 1720595
- PAR ID:
- 10596927
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 7
- Issue:
- 11
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report simulation studies on the self-assembly of hard-lobed particles (patchy particles where patches appear as lobes around a seed) of different shapes and show that various types of self-assembled morphologies can be achieved by tuning inter-lobe interactions. On self-assembly, the linear building blocks having two lobes around the seed formed rings, the trigonal planar building blocks formed cylindrical hollow tubes and two-dimensional sheets, and the square planar building blocks formed spherical clathrates. The tetrahedral, trigonal bipyramidal, and the octahedral-shaped particles formed compact porous crystalline structures which are constituted by either hexagonal close packed or face centered cubic lattices. The pore size distributions revealed that linear, trigonal planar, and square planar building blocks create highly porous self-assembled structures. Our results suggest that these self-assembled morphologies will potentially find applications in tissue engineering, host-guest chemistry, adsorption, and catalysis.more » « less
-
Abstract In this work high-frequency magnetization dynamics and statics of artificial spin-ice lattices with different geometric nanostructure array configurations are studied where the individual nanostructures are composed of ferromagnetic/non-magnetic/ferromagnetic trilayers with different non-magnetic thicknesses. These thickness variations enable additional control over the magnetic interactions within the spin-ice lattice that directly impacts the resulting magnetization dynamics and the associated magnonic modes. Specifically the geometric arrangements studied are square, kagome and trigonal spin ice configurations, where the individual lithographically patterned nanomagnets (NMs) are trilayers, made up of two magnetic layers of of 30 nm and 70 nm thickness respectively, separated by a non-magnetic copper layer of either 2 nm or 40 nm. We show that coupling via the magnetostatic interactions between the ferromagnetic layers of the NMs within square, kagome and trigonal spin-ice lattices offers fine-control over magnetization states and magnetic resonant modes. In particular, the kagome and trigonal lattices allow tuning of an additional mode and the spacing between multiple resonance modes, increasing functionality beyond square lattices. These results demonstrate the ability to move beyond quasi-2D single magnetic layer nanomagnetics via control of the vertical interlayer interactions in spin ice arrays. This additional control enables multi-mode magnonic programmability of the resonance spectra, which has potential for magnetic metamaterials for microwave or information processing applications.more » « less
-
This publication provides files for the finite element simulation of the mechanical behavior of a set of topologically interlocked material (TIM) systems. Files are to be executed with the FE code ABAQUS (TM), Simulia Inc., or need a file translator to be used by other codes if needed. Files are provided for even (i=10) and odd (i=11) numbered square assemblies of (i x i) blocks confined by a rigid frame and subjected to a transverse displacement load at the assembly center. The following files are provided: The simulations are executed as explicit dynamic simulations with a mass-scale approach to extract the quasi-static response. Building blocks are linear elastic and interact with neighbors by contact and friction. The following files are provided BR_tet_i6.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 6 x 6 blocks. This is the reference model 1. BR_tet_i8.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 8 x 8 blocks. This is the reference model 1. BR_tet_i10.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 10 x 10 blocks. This is the reference model 1. BR_tet_i12.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 12 x 12 blocks. This is the reference model 1. BR_tet_i5.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 5 x 5 blocks. This is the reference model 2. BR_tet_i7.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 7 x 7 blocks. This is the reference model 2. BR_tet_i9.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 9 x 9 blocks. This is the reference model 2. BR_tet_i11.inp: File for a TIM system constructed from regular, truncated tetrahedra shaped building blocks. An assembly of 11 x 11 blocks. This is the reference model 2. BT1_tet_i6.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 6 x 6 blocks. BT1_tet_i8.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 8 x 8 blocks. BT1_tet_i10.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 10 x 10 blocks. BT1_tet_i12.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 12 x 12 blocks. BT1_tet_i5.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT1_tet_i7.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT1_tet_i9.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT1_tet_i11.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks. BT2_tet_i6.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 6 x 6 blocks. BT2_tet_i8.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 8 x 8 blocks. BT2_tet_i10.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 10 x 10 blocks. BT2_tet_i12.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 12 x 12 blocks. BT2_tet_i5.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT2_tet_i7.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT2_tet_i9.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT2_tet_i11.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks. BT1_tet_i6_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 6 x 6 blocks. BT1_tet_i8_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 8 x 8 blocks. BT1_tet_i10_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 10 x 10 blocks. BT1_tet_i12_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 12 x 12 blocks. BT1_tet_i5_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 5 x 5 blocks. BT1_tet_i7_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 7 x 7 blocks. BT1_tet_i9_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 9 x 9 blocks. BT1_tet_i11_0_34.inp: File for a TIM system constructed from single-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 11 x 11 blocks. BT2_tet_i6_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 6 x 6 blocks. BT2_tet_i8_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 8 x 8 blocks. BT2_tet_i10_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 10 x 10 blocks. BT2_tet_i12_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 17 degree. An assembly of 12 x 12 blocks. BT2_tet_i5_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 5 x 5 blocks. BT2_tet_i7_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 7 x 7 blocks. BT2_tet_i9_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 9 x 9 blocks. BT2_tet_i11_0_34.inp: File for a TIM system constructed from double-skewed, truncated tetrahedra shaped building blocks. Skew angle is 12 degree. An assembly of 11 x 11 blocks.more » « less
-
Open colloidal lattices possessing omnidirectional photonic bandgaps in the visible or near-visible regime are attractive optical materials the realization of which has remained elusive. We report the use of an inverse design strategy termed landscape engineering that rationally sculpts the free energy self-assembly landscape using evolutionary algorithms to discover anisotropic patchy colloids capable of spontaneously assembling pyrochlore and cubic diamond lattices possessing complete photonic bandgaps. We validate the designs in computer simulations to demonstrate the defect-free formation of these lattices via a two-stage hierarchical assembly mechanism. Our approach demonstrates a principled strategy for the inverse design of self-assembling colloids for the bottom-up fabrication of desired crystal lattices.more » « less
An official website of the United States government
