ABSTRACT Rubisco, the most prevalent protein on Earth, catalyzes both a reaction that initiates C3 carbon fixation, and a reaction that initiates photorespiration, which stimulates protein synthesis. Regulation of the balance between these reactions under atmospheric CO2 fluctuations remains poorly understood. We have hypothesized that vascular plants maintain organic carbon‐to‐nitrogen homeostasis by adjusting the relative activities of magnesium and manganese in chloroplasts to balance carbon fixation and nitrate assimilation rates. The following examined the influence of magnesium and manganese on carboxylation and oxygenation for rubisco purified from two ecotypes of Plantago lanceolataL.: one adapted to the elevated CO2 atmospheres that occur near a natural CO2 spring and the other adapted to more typical CO2 atmospheres that occur nearby. The plastid DNA coding for the large unit of rubisco was similar in both ecotypes. The kinetics of rubiscos from the two ecotypes differed more when associated with manganese than magnesium. Specificity for CO2over O2 (Sc/o) for rubisco from both ecotypes was higher when the enzymes were bound to magnesium than manganese. Differences in the responses of rubisco from P. lanceolata to the metals may account for the adaptation of this species to different CO2 environments.
more »
« less
Metals and other ligands balance carbon fixation and photorespiration in chloroplasts
Abstract The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal. When Rubisco purified from five C3 species was bound to magnesium rather than manganese, the specificity for CO2 over O2, (Sc/o) increased by 25% and the ratio of the maximum velocities of carboxylation / oxygenation (Vcmax/Vomax) increased by 39%. For the recombinant plastidial malic enzyme, the forward reaction (malate decarboxylation) was 30% slower and the reverse reaction (pyruvate carboxylation) was three times faster when bound to manganese rather than magnesium. Adding 6‐phosphoglycerate and NADP+inhibited carboxylation and oxygenation when Rubisco was bound to magnesium and stimulated oxygenation when it was bound to manganese. Conditions that favored RuBP oxygenation stimulated Rubisco to convert as much as 15% of the total RuBP consumed into pyruvate. These results are consistent with a stromal biochemical pathway in which (1) Rubisco when associated with manganese converts a substantial amount of RuBP into pyruvate, (2) malic enzyme when associated with manganese carboxylates a substantial portion of this pyruvate into malate, and (3) chloroplasts export additional malate into the cytoplasm where it generates NADH for assimilating nitrate into amino acids. Thus, plants may regulate the activities of magnesium and manganese in leaves to balance organic carbon and organic nitrogen as atmospheric CO2fluctuates.
more »
« less
- Award ID(s):
- 1904535
- PAR ID:
- 10555954
- Publisher / Repository:
- Blackwell
- Date Published:
- Journal Name:
- Physiologia Plantarum
- Volume:
- 176
- Issue:
- 4
- ISSN:
- 0031-9317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady‐state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans.Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl‐acyl carrier protein (ACPs) levels were quantified overdevelopment.Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5–2% of seed biomass (i.e. 2–9% change in oil).Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.more » « less
-
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.more » « less
-
Summary Leaf dark respiration (Rd) acclimates to environmental changes. However, the magnitude, controls and time scales of acclimation remain unclear and are inconsistently treated in ecosystem models.We hypothesized thatRdand Rubisco carboxylation capacity (Vcmax) at 25°C (Rd,25,Vcmax,25) are coordinated so thatRd,25variations supportVcmax,25at a level allowing full light use, withVcmax,25reflecting daytime conditions (for photosynthesis), andRd,25/Vcmax,25reflecting night‐time conditions (for starch degradation and sucrose export). We tested this hypothesis temporally using a 5‐yr warming experiment, and spatially using an extensive field‐measurement data set. We compared the results to three published alternatives:Rd,25declines linearly with daily average prior temperature;Rdat average prior night temperatures tends towards a constant value; andRd,25/Vcmax,25is constant.Our hypothesis accounted for more variation in observedRd,25over time (R2 = 0.74) and space (R2 = 0.68) than the alternatives. Night‐time temperature dominated the seasonal time‐course ofRd, with an apparent response time scale ofc.2 wk.Vcmaxdominated the spatial patterns.Our acclimation hypothesis results in a smaller increase in globalRdin response to rising CO2and warming than is projected by the two of three alternative hypotheses, and by current models.more » « less
-
Enzymes of the radicalS-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5′C is covalently bound to the unique iron of the [4Fe–4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe–C5′ bond generates the nominally “free” 5′-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5′-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5′-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.more » « less
An official website of the United States government

