skip to main content

Title: Prospects for Engineering Biophysical CO2 Concentrating Mechanisms into Land Plants to Enhance Yields
Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants.
Authors:
;
Award ID(s):
1935444
Publication Date:
NSF-PAR ID:
10175258
Journal Name:
Annual review of plant biology
Volume:
71
Page Range or eLocation-ID:
461-485
ISSN:
1543-5008
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency ofmore »photosynthesis now appears clearer with new challenges and opportunities.« less
  2. Abstract

    Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green algaChlamydomonas reinhardtii. Our model recapitulates allChlamydomonasPCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2leakage, as well as proper enzyme localization to reduce futile cycling between CO2and HCO3. Importantly, our model demonstrates the feasibility of a purely passive CO2uptake strategy at air-level CO2, while active HCO3uptake proves advantageous at lower CO2levels. We propose a four-step engineering path to increase the rate of CO2fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.

  3. Many photosynthetic organisms employ a CO 2 concentrating mechanism (CCM) to increase the rate of CO 2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO 2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO 2 assimilation in diverse organisms.
  4. Photosynthesis is a major process included in land surface models. Accurately estimating the parameters of the photosynthetic sub-models can greatly improve the ability of these models to accurately simulate the carbon cycle of terrestrial ecosystems. Here, we used a hierarchical Bayesian approach to fit the Farquhar–von Caemmerer–Berry model, which is based on the biochemistry of photosynthesis using 236 curves for the relationship between net CO2 assimilation and changes in the intercellular CO2 concentration. An advantage of the hierarchical Bayesian algorithm is that parameters can be estimated at multiple levels (plant, species, plant functional type, and population level) simultaneously. The parameters of the hierarchical strategy were based on the results of a sensitivity analysis. The Michaelis–Menten constant (Kc25), enthalpies of activation (EJ and EV), and two optical parameters (θ and α) demonstrated considerable variation at different levels, which suggests that this variation cannot be ignored. The maximum electron transport rate (Jmax25), maximum rate of Rubisco activity (Vcmax25), and dark respiration in the light (Rd25) were higher for broad-leaved plants than for needle-leaved plants. Comparison of the model’s simulated outputs with observed data showed strong and significant positive correlations, particularly when the model was parameterized at the plant level. In summary, ourmore »study is the first effort to combine sensitivity analysis and hierarchical Bayesian parameter estimation. The resulting realistic parameter distributions for the four levels provide a reference for current and future land surface models. Furthermore, the observed variation in the parameters will require attention when using photosynthetic parameters in future models.« less
  5. Komeili, Arash (Ed.)
    ABSTRACT Cyanobacteria are the prokaryotic group of phytoplankton responsible for a significant fraction of global CO 2 fixation. Like plants, cyanobacteria use the enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco) to fix CO 2 into organic carbon molecules via the Calvin-Benson-Bassham cycle. Unlike plants, cyanobacteria evolved a carbon-concentrating organelle called the carboxysome—a proteinaceous compartment that encapsulates and concentrates Rubisco along with its CO 2 substrate. In the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, we recently identified the McdAB system responsible for uniformly distributing carboxysomes along the cell length. It remains unknown what role carboxysome positioning plays with respect to cellular physiology. Here, we show that a failure to distribute carboxysomes leads to slower cell growth, cell elongation, asymmetric cell division, and elevated levels of cellular Rubisco. Unexpectedly, we also report that even wild-type S. elongatus undergoes cell elongation and asymmetric cell division when grown at the cool, but environmentally relevant, growth temperature of 20°C or when switched from a high- to ambient-CO 2 environment. The findings suggest that carboxysome positioning by the McdAB system functions to maintain the carbon fixation efficiency of Rubisco by preventing carboxysome aggregation, which is particularly important under growth conditions where rod-shaped cyanobacteria adopt a filamentous morphology. IMPORTANCEmore »Photosynthetic cyanobacteria are responsible for almost half of global CO 2 fixation. Due to eutrophication, rising temperatures, and increasing atmospheric CO 2 concentrations, cyanobacteria have gained notoriety for their ability to form massive blooms in both freshwater and marine ecosystems across the globe. Like plants, cyanobacteria use the most abundant enzyme on Earth, Rubisco, to provide the sole source of organic carbon required for its photosynthetic growth. Unlike plants, cyanobacteria have evolved a carbon-concentrating organelle called the carboxysome that encapsulates and concentrates Rubisco with its CO 2 substrate to significantly increase carbon fixation efficiency and cell growth. We recently identified the positioning system that distributes carboxysomes in cyanobacteria. However, the physiological consequence of carboxysome mispositioning in the absence of this distribution system remains unknown. Here, we find that carboxysome mispositioning triggers changes in cell growth and morphology as well as elevated levels of cellular Rubisco.« less