skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallel MCMC algorithms: theoretical foundations, algorithm design, case studies
Abstract Parallel Markov Chain Monte Carlo (pMCMC) algorithms generate clouds of proposals at each step to efficiently resolve a target probability distribution $$\mu $$. We build a rigorous foundational framework for pMCMC algorithms that situates these methods within a unified ‘extended phase space’ measure-theoretic formalism. Drawing on our recent work that provides a comprehensive theory for reversible single-proposal methods, we herein derive general criteria for multiproposal acceptance mechanisms that yield ergodic chains on general state spaces. Our formulation encompasses a variety of methodologies, including proposal cloud resampling and Hamiltonian methods, while providing a basis for the derivation of novel algorithms. In particular, we obtain a top-down picture for a class of methods arising from ‘conditionally independent’ proposal structures. As an immediate application of this formalism, we identify several new algorithms including a multiproposal version of the popular preconditioned Crank–Nicolson (pCN) sampler suitable for high- and infinite-dimensional target measures that are absolutely continuous with respect to a Gaussian base measure. To supplement the aforementioned theoretical results, we carry out a selection of numerical case studies that evaluate the efficacy of these novel algorithms. First, noting that the true potential of pMCMC algorithms arises from their natural parallelizability and the ease with which they map to modern high-performance computing architectures, we provide a limited parallelization study using TensorFlow and a graphics processing unit to scale pMCMC algorithms that leverage as many as 100k proposals at each step. Second, we use our multiproposal pCN algorithm (mpCN) to resolve a selection of problems in Bayesian statistical inversion for partial differential equations motivated by fluid measurement. These examples provide preliminary evidence of the efficacy of mpCN for high-dimensional target distributions featuring complex geometries and multimodal structures.  more » « less
Award ID(s):
2108791 2009859 2239325 2108790 2236854 2152774
PAR ID:
10556064
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Transactions of Mathematics and Its Applications
Volume:
8
Issue:
2
ISSN:
2398-4945
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel way of using videos to obtain high precision object proposals for weakly-supervised object detection. Existing weakly-supervised detection approaches use off-the-shelf proposal methods like edge boxes or selective search to obtain candidate boxes. These methods provide high recall but at the expense of thousands of noisy proposals. Thus, the entire burden of finding the few relevant object regions is left to the ensuing object mining step. To mitigate this issue, we focus instead on improving the precision of the initial candidate object proposals. Since we cannot rely on localization annotations, we turn to video and leverage motion cues to automatically estimate the extent of objects to train a Weakly-supervised Region Proposal Network (W-RPN). We use the W-RPN to generate high precision object proposals, which are in turn used to re-rank high recall proposals like edge boxes or selective search according to their spatial overlap. Our W-RPN proposals lead to significant improvement in performance for state-of-the-art weakly-supervised object detection approaches on PASCAL VOC 2007 and 2012. 
    more » « less
  2. We propose a novel way of using videos to obtain high precision object proposals for weakly-supervised object detection. Existing weakly-supervised detection approaches use off-the-shelf proposal methods like edge boxes or selective search to obtain candidate boxes. These methods provide high recall but at the expense of thousands of noisy proposals. Thus, the entire burden of finding the few relevant object regions is left to the ensuing object mining step. To mitigate this issue, we focus instead on improving the precision of the initial candidate object proposals. Since we cannot rely on localization annotations, we turn to video and leverage motion cues to automatically estimate the extent of objects to train a Weakly-supervised Region Proposal Network (W-RPN). We use the W-RPN to generate high precision object proposals, which are in turn used to re-rank high recall proposals like edge boxes or selective search according to their spatial overlap. Our W-RPN proposals lead to significant improvement in performance for state-of-the-art weakly-supervised object detection approaches on PASCAL VOC 2007 and 2012. 
    more » « less
  3. III, H.D.; Singh, A. (Ed.)
    We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frame structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can be used to train highly-structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods. 
    more » « less
  4. Predictive modeling often ignores interaction effects among predictors in high-dimensional data because of analytical and computational challenges. Research in interaction selection has been galvanized along with methodological and computational advances. In this study, we aim to investigate the performance of two types of predictive algorithms that can perform interaction selection. Specifically, we compare the predictive performance and interaction selection accuracy of both penalty-based and tree-based predictive algorithms. Penalty-based algorithms included in our comparative study are the regularization path algorithm under the marginality principle (RAMP), the least absolute shrinkage selector operator (LASSO), the smoothed clipped absolute deviance (SCAD), and the minimax concave penalty (MCP). The tree-based algorithms considered are random forest (RF) and iterative random forest (iRF). We evaluate the effectiveness of these algorithms under various regression and classification models with varying structures and dimensions. We assess predictive performance using the mean squared error for regression and accuracy, sensitivity, specificity, balanced accuracy, and F1 score for classification. We use interaction coverage to judge the algorithm’s efficacy for interaction selection. Our findings reveal that the effectiveness of the selected algorithms varies depending on the number of predictors (data dimension) and the structure of the data-generating model, i.e., linear or nonlinear, hierarchical or non-hierarchical. There were at least one or more scenarios that favored each of the algorithms included in this study. However, from the general pattern, we are able to recommend one or more specific algorithm(s) for some specific scenarios. Our analysis helps clarify each algorithm’s strengths and limitations, offering guidance to researchers and data analysts in choosing an appropriate algorithm for their predictive modeling task based on their data structure. 
    more » « less
  5. Abstract BackgroundIn many grant review settings, proposals are selected for funding on the basis of summary statistics of review ratings. Challenges of this approach (including the presence of ties and unclear ordering of funding preference for proposals) could be mitigated if rankings such as top-k preferences or paired comparisons, which are local evaluations that enforce ordering across proposals, were also collected and incorporated in the analysis of review ratings. However, analyzing ratings and rankings simultaneously has not been done until recently. This paper describes a practical method for integrating rankings and scores and demonstrates its usefulness for making funding decisions in real-world applications. MethodsWe first present the application of our existing joint model for rankings and ratings, the Mallows-Binomial, in obtaining an integrated score for each proposal and generating the induced preference ordering. We then apply this methodology to several theoretical “toy” examples of rating and ranking data, designed to demonstrate specific properties of the model. We then describe an innovative protocol for collecting rankings of the top-six proposals as an add-on to the typical peer review scoring procedures and provide a case study using actual peer review data to exemplify the output and how the model can appropriately resolve judges’ evaluations. ResultsFor the theoretical examples, we show how the model can provide a preference order to equally rated proposals by incorporating rankings, to proposals using ratings and only partial rankings (and how they differ from a ratings-only approach) and to proposals where judges provide internally inconsistent ratings/rankings and outlier scoring. Finally, we discuss how, using real world panel data, this method can provide information about funding priority with a level of accuracy in a well-suited format for research funding decisions. ConclusionsA methodology is provided to collect and employ both rating and ranking data in peer review assessments of proposal submission quality, highlighting several advantages over methods relying on ratings alone. This method leverages information to most accurately distill reviewer opinion into a useful output to make an informed funding decision and is general enough to be applied to settings such as in the NIH panel review process. 
    more » « less