skip to main content


Title: You Reap What You Sow: Using Videos to Generate High Precision Object Proposals for Weakly-Supervised Object Detection
We propose a novel way of using videos to obtain high precision object proposals for weakly-supervised object detection. Existing weakly-supervised detection approaches use off-the-shelf proposal methods like edge boxes or selective search to obtain candidate boxes. These methods provide high recall but at the expense of thousands of noisy proposals. Thus, the entire burden of finding the few relevant object regions is left to the ensuing object mining step. To mitigate this issue, we focus instead on improving the precision of the initial candidate object proposals. Since we cannot rely on localization annotations, we turn to video and leverage motion cues to automatically estimate the extent of objects to train a Weakly-supervised Region Proposal Network (W-RPN). We use the W-RPN to generate high precision object proposals, which are in turn used to re-rank high recall proposals like edge boxes or selective search according to their spatial overlap. Our W-RPN proposals lead to significant improvement in performance for state-of-the-art weakly-supervised object detection approaches on PASCAL VOC 2007 and 2012.  more » « less
Award ID(s):
1751206
NSF-PAR ID:
10140337
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel way of using videos to obtain high precision object proposals for weakly-supervised object detection. Existing weakly-supervised detection approaches use off-the-shelf proposal methods like edge boxes or selective search to obtain candidate boxes. These methods provide high recall but at the expense of thousands of noisy proposals. Thus, the entire burden of finding the few relevant object regions is left to the ensuing object mining step. To mitigate this issue, we focus instead on improving the precision of the initial candidate object proposals. Since we cannot rely on localization annotations, we turn to video and leverage motion cues to automatically estimate the extent of objects to train a Weakly-supervised Region Proposal Network (W-RPN). We use the W-RPN to generate high precision object proposals, which are in turn used to re-rank high recall proposals like edge boxes or selective search according to their spatial overlap. Our W-RPN proposals lead to significant improvement in performance for state-of-the-art weakly-supervised object detection approaches on PASCAL VOC 2007 and 2012. 
    more » « less
  2. Recent efforts in deploying Deep Neural Networks for object detection in real world applications, such as autonomous driving, assume that all relevant object classes have been observed during training. Quantifying the performance of these models in settings when the test data is not represented in the training set has mostly focused on pixel-level uncertainty estimation techniques of models trained for semantic segmentation. This paper proposes to exploit additional predictions of semantic segmentation models and quantifying its confidences, followed by classification of object hypotheses as known vs. unknown, out of distribution objects. We use object proposals generated by Region Proposal Network (RPN) and adapt distance aware uncertainty estimation of semantic segmentation using Radial Basis Functions Networks (RBFN) for class agnostic object mask prediction. The augmented object proposals are then used to train a classifier for known vs. unknown objects categories. Experimental results demonstrate that the proposed method achieves parallel performance to state of the art methods for unknown object detection and can also be used effectively for reducing object detectors' false positive rate. Our method is well suited for applications where prediction of non-object background categories obtained by semantic segmentation is reliable. 
    more » « less
  3. Proc. 2023 European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (Ed.)
    Automated relation extraction without extensive human-annotated data is a crucial yet challenging task in text mining. Existing studies typically use lexical patterns to label a small set of high-precision relation triples and then employ distributional methods to enhance detection recall. This precision-first approach works well for common relation types but struggles with unconventional and infrequent ones. In this work, we propose a recall-first approach that first leverages high-recall patterns (e.g., a per:siblings relation normally requires both the head and tail entities in the person type) to provide initial candidate relation triples with weak labels and then clusters these candidate relation triples in a latent spherical space to extract high-quality weak supervisions. Specifically, we present a novel framework, RCLUS, where each relation triple is represented by its head/tail entity type and the shortest dependency path between the entity mentions. RCLUS first applies high-recall patterns to narrow down each relation type’s candidate space. Then, it embeds candidate relation triples in a latent space and conducts spherical clustering to further filter out noisy candidates and identify high-quality weakly-labeled triples. Finally, RCLUS leverages the above-obtained triples to prompt-tune a pre-trained language model and utilizes it for improved extraction coverage. We conduct extensive experiments on three public datasets and demonstrate that RCLUS outperforms the weakly-supervised baselines by a large margin and achieves generally better performance than fully-supervised methods in low-resource settings. 
    more » « less
  4. null (Ed.)
    This paper reports a new solution of leveraging temporal classification to support weakly supervised object detection (WSOD). Specifically, we introduce raster scan-order techniques to serialize 2D images into 1D sequence data, and then leverage a combined LSTM (Long, Short-Term Memory) and CTC (Connectionist Temporal Classification) network to achieve object localization based on a total count (of interested objects). We term our proposed network LSTM-CCTC (Count-based CTC). This “learning from counting” strategy differs from existing WSOD methods in that our approach automatically identifies critical points on or near a target object. This strategy significantly reduces the need of generating a large number of candidate proposals for object localization. Experiments show that our method yields state-of-the-art performance based on an evaluation on PASCAL VOC datasets. 
    more » « less
  5. null (Ed.)
    3D object detection is an important yet demanding task that heavily relies on difficult to obtain 3D annotations. To reduce the required amount of supervision, we propose 3DIoUMatch, a novel semi-supervised method for 3D object detection applicable to both indoor and outdoor scenes. We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels. However, due to the high task complexity, we observe that the pseudo-labels suffer from significant noise and are thus not directly usable. To that end, we introduce a confidence-based filtering mechanism, inspired by FixMatch. We set confidence thresholds based upon the predicted objectness and class probability to filter low-quality pseudo-labels. While effective, we observe that these two measures do not sufficiently capture localization quality. We therefore propose to use the estimated 3D IoU as a localization metric and set category-aware self-adjusted thresholds to filter poorly localized proposals. We adopt VoteNet as our backbone detector on indoor datasets while we use PV-RCNN on the autonomous driving dataset, KITTI. Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios (including fully labeled setting). For example, when training using only 10% labeled data on ScanNet, 3DIoUMatch achieves 7.7 absolute improvement on mAP@0.25 and 8.5 absolute improvement on mAP@0.5 upon the prior art. On KITTI, we are the first to demonstrate semi-supervised 3D object detection and our method surpasses a fully supervised baseline from 1.8% to 7.6% under different label ratio and categories. 
    more » « less