skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Phase-space methods for neutrino oscillations: Extension to multibeams
The phase-space approach (PSA), which was originally introduced in Lacroix [] to describe neutrino flavor oscillations for interacting neutrinos emitted from stellar objects is extended to describe arbitrary numbers of neutrino beams. The PSA is based on mapping the quantum fluctuations into a statistical treatment by sampling initial conditions followed by independent mean-field evolution. A new method is proposed to perform this sampling that allows treating an arbitrary number of neutrinos in each neutrino beams. We validate the technique successfully and confirm its predictive power on several examples where a reference exact calculation is possible. We show that it can describe many-body effects, such as entanglement and dissipation induced by the interaction between neutrinos. Due to the complexity of the problem, exact solutions can only be calculated for rather limited cases, with a limited number of beams and/or neutrinos in each beam. The PSA approach considerably reduces the numerical cost and provides an efficient technique to accurately simulate arbitrary numbers of beams. Examples of PSA results are given here, including up to 200 beams with time-independent or time-dependent Hamiltonians. We anticipate that this approach will be useful to bridge exact microscopic techniques with more traditional transport theories used in neutrino oscillations. It will also provide important reference calculations for future quantum computer applications where other techniques are not applicable to classical computers. Published by the American Physical Society2024  more » « less
Award ID(s):
2411495 2020275
PAR ID:
10556100
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review D
Volume:
110
Issue:
10
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In environments with prodigious numbers of neutrinos, such as core-collapse supernovae, neutron star mergers, or the early Universe, neutrino-neutrino interactions are dynamically significant. They can dominate neutrino flavor evolution and force it to be nonlinear, causing collective neutrino oscillations. Such collective oscillations have been studied numerically, for systems with up to millions of neutrinos, using mean-field or one-particle effective approximations. However, such a system of interacting neutrinos is a quantum many-body system, wherein quantum correlations could play a significant role in the flavor evolution—thereby motivating the exploration of many-body treatments that follow the time evolution of these correlations. In many-body flavor evolution calculations with two neutrino flavors, the emergence of spectral splits in the neutrino energy distributions has been found to be correlated with the degree of quantum entanglement across the spectrum. In this work, for the first time, we investigate the emergence of spectral splits in the three-flavor many-body collective neutrino oscillations. We find that the emergence of spectral splits resembles the number and location found in the mean-field approximation but not in the width. Moreover, unlike in the two-flavor many-body calculations, we find that additional degrees of freedom make it more difficult to establish a correlation between the location of the spectral splits and the degree of quantum entanglement across the neutrino energy spectrum. The observation from the two-flavor case, that neutrinos nearest to the spectral split frequency exhibit the highest level of entanglement, is more difficult to ascertain in the three-flavor case because of the presence of multiple spectral splits across different pairwise combinations of flavor and/or mass states. Published by the American Physical Society2025 
    more » « less
  2. We report a study of the inelasticity distribution in the scattering of neutrinos of energy 80–560 GeV off nucleons. Using atmospheric muon neutrinos detected in IceCube’s sub-array DeepCore during 2012–2021, we fit the observed inelasticity in the data to a parameterized expectation and extract the values that describe it best. Finally, we compare the results to predictions from various combinations of perturbative QCD calculations and atmospheric neutrino flux models. Published by the American Physical Society2025 
    more » « less
  3. Accelerator based neutrino oscillation experiments seek to measure the relative number of electron and muon (anti)neutrinos at different L / E values. However high statistics studies of neutrino interactions are almost exclusively measured using muon (anti)neutrinos since the dominant flavor of neutrinos produced by accelerator based beams are of the muon type. This work reports new measurements of electron (anti)neutrinos interactions in hydrocarbon, obtained by strongly suppressing backgrounds initiated by muon flavor (anti)neutrinos. Double differential cross sections as a function of visible energy transfer, E avail , and transverse momentum transfer, p T , or three momentum transfer, q 3 are presented. Published by the American Physical Society2024 
    more » « less
  4. We study neutrino flavor evolution in the quantum many-body approach using the full neutrino-neutrino Hamiltonian, including the usually neglected terms that mediate nonforward scattering processes. Working in the occupation number representation with plane waves as single-particle states, we explore the time evolution of simple initial states with up to N = 10 neutrinos. We discuss the time evolution of the Loschmidt echo, one body flavor and kinetic observables, and the one-body entanglement entropy. For the small systems considered, we observe “thermalization” of both flavor and momentum degrees of freedom on comparable time scales, with results converging towards expectation values computed within a microcanonical ensemble. We also observe that the inclusion of nonforward processes generates a faster flavor evolution compared to the one induced by the truncated (forward) Hamiltonian. Published by the American Physical Society2024 
    more » « less
  5. The Forward Search Experiment (FASER) at CERN’s Large Hadron Collider (LHC) has recently directly detected the first collider neutrinos. Neutrinos play an important role in all FASER analyses, either as signal or background, and it is therefore essential to understand the neutrino event rates. In this study, we update previous simulations and present prescriptions for theoretical predictions of neutrino fluxes and cross sections, together with their associated uncertainties. With these results, we discuss the potential for possible measurements that could be carried out in the coming years with the FASER neutrino data to be collected in LHC Run 3 and Run 4. Published by the American Physical Society2024 
    more » « less