Abstract The Greenland Ice Sheet (GrIS) is losing mass at an increasing rate yet mass gain from snowfall still exceeds the loss attributed to surface melt processes on an annual basis. This work assesses the relationship between persistent atmospheric blocking across the Euro‐Atlantic region and enhanced precipitation processes over the central GrIS during June–August and September–November. Results show that the vast majority of snowfall events in the central GrIS coincide with Euro‐Atlantic blocking. During June–August, snowfall events are produced primarily by mixed‐phase clouds (88%) and are linked to a persistent blocking anticyclone over southern Greenland (84%). The blocking anticyclone slowly advects warm, moist air masses into western and southern Greenland, with positive temperature and water vapor anomalies that intensify over the central GrIS. A zonal integrated water vapor transport pattern south of Greenland indicates a southern shift of the North Atlantic storm track associated with the high‐latitude blocking. In contrast, snowfall events during September–November are largely produced by ice‐phase clouds (85%) and are associated with a blocking anticyclone over the Nordic Seas and blocked flow over northern Europe (78%). The blocking anticyclone deflects the westerly North Atlantic storm track poleward and enables the rapid transport of warm, moist air masses up the steep southeastern edge of the GrIS, with positive temperature and water vapor anomalies to the east and southeast of Greenland. These results emphasize the critical role of Euro‐Atlantic blocking in promoting snowfall processes over the central GrIS and the importance of accurate representation of blocking in climate model projections.
more »
« less
Polar Low Circulation Enhances Greenland's West Coast Cloud Surface Warming
Abstract Mass loss of the Greenland Ice Sheet (GrIS) plays a major role in the global sea level rise. The west coast of the GrIS has contributed 1,000 Gt of the 4,488 Gt GrIS mass loss between 2002 and 2021, making it a hotspot for GrIS mass loss. Surface melting is driven by changes in the radiative budget at the surface, which are modulated by clouds. Previous works have shown the impact of North Atlantic transport for influencing cloudiness over the GrIS. Here we used space‐based lidar cloud profile observations to show that a polar low circulation promotes the presence of low clouds over the GrIS west coast that warm radiatively the GrIS surface during the melt season. Polar low circulation transports moisture and low clouds from the sea to the west of Greenland up over the GrIS west coast through the melt season. The concomitance of the increasing presence of low cloud in fall over the Baffin Sea due to seasonal sea‐ice retreat and a maximum occurrence of Polar low circulation in September results in a maximum of low cloud fraction (∼14% at 2.5 km above sea level) over the GrIS west coast in September. These low clouds warm radiatively the GrIS west coast surface up to 80 W/m2locally. This warming contributes to an average increase of 10 W/m2of cloud surface warming in September compared to July on the GrIS west coast. Overall, this study suggests that regional atmospheric processes independent from North Atlantic transport may also influence the GrIS melt.
more »
« less
- Award ID(s):
- 2137091
- PAR ID:
- 10556101
- Publisher / Repository:
- Journal of Geophysical Research
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 11
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Greenland ice sheet melt is a large contributor to rising global sea level and melt is dependent on surface air temperature. Arctic temperatures are strongly coupled to clouds but spatial connections between clouds and temperature have yet to be established across Greenland. By mapping spaceborne lidar measurements and surface observations, it is shown that radiatively opaque clouds generally coincide with anomalously warm near‐surface temperatures at Greenland sites. These results indicate that both temperatures over 0°C as well as positive daily temperature anomalies relate to spatially extensive opaque cloud cover. While prior studies indicate that clouds enhance extreme melt events, this research shows that opaque cloud cover and surface warming are closely related across the Greenland ice sheet, particularly in the ablation region. These findings establish broadly the spatial relationships between opaque clouds and temperatures and demonstrate the importance of direct observations across Greenland.more » « less
-
Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes.more » « less
-
Abstract Petermann Gletscher drains ~4% of the Greenland ice sheet (GrIS) area, with ~80% of its mass loss occurring by basal melting of its ice shelf. We use a high-resolution coupled ocean and sea-ice model with a thermodynamic glacial ice shelf to diagnose ocean-controlled seasonality in basal melting of the Petermann ice shelf. Basal melt rates increase by ~20% in summer due to a seasonal shift in ocean circulation within Nares Strait that is associated with the transition from landfast sea ice to mobile sea ice. Under landfast ice, cold near-surface waters are maintained on the eastern side of the strait and within Petermann Fjord, reducing basal melt and insulating the ice shelf. Under mobile sea ice, warm waters are upwelled on the eastern side of the strait and, mediated by local instabilities and eddies, enter Petermann Fjord, enhancing basal melt down to depths of 200 m. The transition between these states occurs rapidly, and seasonal changes within Nares Strait are conveyed into the fjord within the same season. These results suggest that long-term changes in the length of the landfast sea-ice season will substantially alter the structure of Petermann ice shelf and its contribution to GrIS mass loss.more » « less
-
Abstract. Understanding the role of atmospheric circulation anomalies on the surfacemass balance of the Greenland ice sheet (GrIS) is fundamental for improvingestimates of its current and future contributions to sea level rise. Here,we show, using a combination of remote sensing observations, regionalclimate model outputs, reanalysis data, and artificial neural networks, thatunprecedented atmospheric conditions (1948–2019) occurring in the summerof 2019 over Greenland promoted new record or close-to-record values ofsurfacemass balance (SMB), runoff, and snowfall. Specifically, runoff in 2019 ranked second withinthe 1948–2019 period (after 2012) and first in terms of surface massbalance negative anomaly for the hydrological year 1 September 2018–31 August 2019. The summer of 2019 was characterized by an exceptionalpersistence of anticyclonic conditions that, in conjunction with low albedoassociated with reduced snowfall in summer, enhanced the melt–albedofeedback by promoting the absorption of solar radiation and favoredadvection of warm, moist air along the western portion of the ice sheettowards the north, where the surface melt has been the highest since 1948.The analysis of the frequency of daily 500 hPa geopotential heights obtainedfrom artificial neural networks shows that the total number of days with thefive most frequent atmospheric patterns that characterized the summer of2019 was 5 standard deviations above the 1981–2010 mean, confirming theexceptional nature of the 2019 season over Greenland.more » « less
An official website of the United States government

