skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energetic overturning flows, dynamic interocean exchanges, and ocean warming observed in the South Atlantic
Abstract Since the inception of the international South Atlantic Meridional Overturning Circulation initiative in the 21st century, substantial advances have been made in observing and understanding the Southern Hemisphere component of the Atlantic Meridional Overturning Circulation (AMOC). Here we synthesize insights gained into overturning flows, interocean exchanges, and water mass distributions and pathways in the South Atlantic. The overturning circulation in the South Atlantic uniquely carries heat equatorward and exports freshwater poleward and consists of two strong overturning cells. Density and pressure gradients, winds, eddies, boundary currents, and interocean exchanges create an energetic circulation in the subtropical and tropical South Atlantic Ocean. The relative importance of these drivers varies with the observed latitude and time scale. AMOC, interocean exchanges, and climate changes drive ocean warming at all depths, upper ocean salinification, and freshening in the deep and abyssal ocean in the South Atlantic. Long-term sustained observations are critical to detect and understand these changes and their impacts.  more » « less
Award ID(s):
2001646 1755529
PAR ID:
10420394
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate. 
    more » « less
  2. Abstract The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO 2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO 2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate. 
    more » « less
  3. his directory contains model code, input, output, and scripts from a hosing (freshwater forcing in the North Atlantic) simulation with the OSU-UVic climate model (version 2.9.10) to investigate the effect of changes in the Atlantic Meridional Overturning Circulation (AMOC) on carbon and carbon-13 components in the ocean as described in Schmittner and Boling (2025) and Schmittner (2025). Model code is in the code/ subdirectory. Model input data is in the data/ subdirectory and in the control.in and mk.in files. Model output data is in the tavg*nc and tsi*nc files. Ferret scripts used to produce the figures are in the ferret/ subdirectory. Andreas Schmittner (andreas.schmittner@oregonstate.edu) References: Schmittner, A. and M. Boling (2025) Impact of Atlantic Meridional Overturning Circulation Collapse on Carbon Components in the Ocean, Global Biogeochemical Cycles, 39, e2025GB008526 doi: 10.1029/2025GB008526. Schmittner, A. (2025) Impact of Atlantic Meridional Overturning Circulation Collapse on Carbon-13 Components in the Ocean, Global Biogeochemical Cycles, 39, e2025GB008527 doi: 10.1029/2025GB008527. 
    more » « less
  4. Abstract Over the past century, the subpolar North Atlantic experienced slight cooling or suppressed warming, relative to the background positive temperature trends, often dubbed the North Atlantic warming hole (NAWH). The causes of the NAWH remain under debate. Here we conduct coupled ocean-atmosphere simulations to demonstrate that enhanced Indian Ocean warming, another salient feature of global warming, could increase local rainfall and through teleconnections strengthen surface westerly winds south of Greenland, cooling the subpolar North Atlantic. In decades to follow however, this cooling effect would gradually vanish as the Indian Ocean warming acts to strengthen the Atlantic meridional overturning circulation (AMOC). We argue that the historical NAWH can potentially be explained by such atmospheric mechanisms reliant on surface wind changes, while oceanic mechanisms related to AMOC changes become more important on longer timescales. Thus, explaining the North Atlantic temperature trends and particularly the NAWH requires considering both atmospheric and oceanic mechanisms. 
    more » « less
  5. Abstract The Atlantic meridional overturning circulation (AMOC) plays a key role in climate due to uptake and redistribution of heat and carbon anomalies. This redistribution takes place along several main pathways that link the high-latitude North Atlantic with midlatitudes and the Southern Ocean and involves currents on a wide range of spatial scales. This numerical study examines the importance of mesoscale currents (“eddies”) in these AMOC pathways and associated time scales, using a highly efficient offline tracer model. The study uses two boundary impulse response (BIR) tracers, which can quantify the importance of the Atlantic tracer exchanges with the high-latitude atmosphere in the north and with the Southern Ocean in the south. The results demonstrate that mesoscale advection leads to an increase in the overall BIR inventory during the first 100 years and results in a more efficient and spatially uniform ventilation of the deep Atlantic. Mesoscale currents also facilitate meridional spreading of the BIR tracer and thus assist the large-scale advection. The results point toward the importance of spatial inhomogeneity and anisotropy of the eddy-induced mixing in several mixing “hotspots,” as revealed by an eddy diffusivity tensor. Conclusions can be expected to assist evaluations of eddy-permitting simulations that stop short of full resolution of mesoscale, as well as development of eddy parameterization schemes. 
    more » « less