Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy tradeoff. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological level. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular 2D track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced choice task. In a subset of 15 participants, we measured short latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function (F 4,108 = 32.15, p < 0.001) and was associated with improved proprioceptive sensitivity at retention (t 22 = 24.75, p = 0.0031). Further, SAI increased after training (F 1,14 = 5.41, p = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc) are specifically linked to somatosensory function.
more »
« less
Associating frailty and dynamic dysregulation between motor and cardiac autonomic systems
Frailty is a geriatric syndrome associated with the lack of physiological reserve and consequent adverse outcomes (therapy complications and death) in older adults. Recent research has shown associations between heart rate (HR) dynamics (HR changes during physical activity) with frailty. The goal of the present study was to determine the effect of frailty on the interconnection between motor and cardiac systems during a localized upper-extremity function (UEF) test. Fifty-six individuals aged 65 or above were recruited and performed the previously developed UEF test consisting of 20-s rapid elbow flexion with the right arm. Frailty was assessed using the Fried phenotype. Wearable gyroscopes and electrocardiography were used to measure motor function and HR dynamics. In this study, the interconnection between motor (angular displacement) and cardiac (HR) performance was assessed, using convergent cross-mapping (CCM). A significantly weaker interconnection was observed among pre-frail and frail participants compared to non-frail individuals (p< 0.01, effect size = 0.81 ± 0.08). Using logistic models, pre-frailty and frailty were identified with sensitivity and specificity of 82%–89%, using motor, HR dynamics, and interconnection parameters. Findings suggested a strong association between cardiac-motor interconnection and frailty. Adding CCM parameters in a multimodal model may provide a promising measure of frailty.
more »
« less
- PAR ID:
- 10556254
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Aging
- Volume:
- 5
- ISSN:
- 2673-6217
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Students often struggle to understand the vector dot product, which is a foundational operation used in mathematics and engineering. To improve undergraduate engineering students’ understanding of the dot product, we developed and tested the effects of an augmented reality (AR) app. The app utilized scaffolding and storyline narration to cover: (1) computation of the angle between vectors, and (2) the projection of a force vector onto a line. Students were randomly assigned to either a treatment group to utilize the AR, or a control group for traditional peer collaboration. Pre/post testing was conducted using a 14-item, 100-point test. 61 pairs of pre/posttest data (ARn = 25, controln = 36) were analyzed using ANCOVA. The 20.9-point improvement in the AR group's mean test scores was significantly larger than the 9.33-point increase in the control group. The effect size (partialη2 = 0.135) was considered medium to large. The Instructional Materials Motivation Survey assessed motivation from 12 students in each group. Motivation of the AR group was 19.3% larger than that of the control. The difference was significant with a large effect size. The results suggest that the 3D visualization and immersive qualities of AR may improve learning of vector operations in STEM disciplines.more » « less
-
Abstract Understanding the complexity of biological signals has been gaining widespread attention due to increasing knowledge on the nonlinearity that exists in these systems. Cardiac signals are known to exhibit highly complex dynamics, consisting of high degrees of interdependency that regulate the cardiac contractile functions. These regulatory mechanisms are important to understand for the development of novelin vitrocardiac systems, especially with the exponential growth in deriving cardiac tissue directly from human induced pluripotent stem cells (hiPSCs). This work describes a unique analytical approach that integrates linear amplitude and frequency analysis of physical cardiac contraction, with nonlinear analysis of the contraction signals to measure the signals’ complexity. We generated contraction motion waveforms reflecting the physical contraction of hiPSC-derived cardiomyocytes (hiPSC-CMs) and implemented these signals to nonlinear analysis to compute the capacity and correlation dimensions. These parameters allowed us to characterize the dynamics of the cardiac signals when reconstructed into a phase space and provided a measure of signal complexity to supplement contractile physiology data. Thus, we applied this approach to evaluate drug response and observed that relationships between contractile physiology and dynamic complexity were unique to each tested drug. This illustrated the applicability of this approach in not only characterization of cardiac signals, but also monitoring and diagnostics of cardiac health in response to external stress.more » « less
-
Abstract Head movement relative to the stationary environment gives rise to congruent vestibular and visual optic-flow signals. The resulting perception of a stationary visual environment, referred to herein as stationarity perception, depends on mechanisms that compare visual and vestibular signals to evaluate their congruence. Here we investigate the functioning of these mechanisms and their dependence on fixation behavior as well as on the activeversuspassive nature of the head movement. Stationarity perception was measured by modifying the gain on visual motion relative to head movement on individual trials and asking subjects to report whether the gain was too low or too high. Fitting a psychometric function to the data yields two key parameters of performance. The mean is a measure of accuracy, and the standard deviation is a measure of precision. Experiments were conducted using a head-mounted display with fixation behavior monitored by an embedded eye tracker. During active conditions, subjects rotated their heads in yaw ∼15 deg/s over ∼1 s. Each subject’s movements were recorded and played backviarotating chair during the passive condition. During head-fixed and scene-fixed fixation the fixation target moved with the head or scene, respectively. Both precision and accuracy were better during active than passive head movement, likely due to increased precision on the head movement estimate arising from motor prediction and neck proprioception. Performance was also better during scene-fixed than head-fixed fixation, perhaps due to decreased velocity of retinal image motion and increased precision on the retinal image motion estimate. These results reveal how the nature of head and eye movements mediate encoding, processing, and comparison of relevant sensory and motor signals.more » « less
-
Abstract. Hydraulic redistribution (HR), the movement of water via plant root systems that connect soil compartments with different water potential, should influences soil moisture dynamics particularly in water-limited ecosystems. Realistic representation of HR in ecosystem models is essential to improve the ability of these models to predict ecosystem function in dryland regions. In this study, we integrated HR into the Terrestrial ECOsystem model and employed a Bayesian Markov Chain Monte Carlo technique to optimize soil hydraulic parameters and root conductance using four years of soil moisture observations from a piñon-juniper woodland. We found that (i) integrating HR generally improved model prediction of soil moisture during dry periods, particularly in the top 30 cm of the soil profile, where more than 50 % of root biomass exists, mostly during dry periods; (ii) HR increased surface soil moisture by up to 60 % during dry periods; (iii) HR decreased with increasing precipitation magnitude and frequency, however, the length of dry spells between rainfall events also influenced HR rates; and (iv) upward HR in the top 60 cm soil profile became more pronounced as dry conditions progressed, with rates ranging from 0.10 to 0.50 mm d⁻¹. These findings highlight that HR plays a likely role in sustaining soil moisture during extended dry periods and has a limited effect during precipitation events. Future research should investigate the effect of HR on other ecosystem processes, such as net ecosystem exchange of carbon and evapotranspiration under varying climatic conditions.more » « less
An official website of the United States government

