Abstract A test of lepton flavor universality in and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereqis the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, , is consistent with the present world-average value and has a comparable precision.
more »
« less
Robust superconductivity and the suppression of charge-density wave in the quasi-skutterudites Ca3(Ir1−xRhx)4Sn13 single crystals at ambient pressure
Abstract Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature, , varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero at 0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just above shows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.
more »
« less
- Award ID(s):
- 2219901
- PAR ID:
- 10556312
- Publisher / Repository:
- Institute of Physics (IOP)
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 36
- Issue:
- 38
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 385702
- Subject(s) / Keyword(s):
- open access superconductivity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the differential geometry of the moduli space of instantons on . Extending previous results, we show that a sigma-model with this target space can be expected to possess a large superconformal symmetry, supporting speculations that this sigma-model may be dual to Type IIB superstring theory on . The sigma-model is parametrized by three integers—the rank of the gauge group, the instanton number, and a ‘level’ (the integer coefficient of a topologically nontrivialB-field, analogous to a WZW level). These integers are expected to correspond to two five-brane charges and a one-brane charge. The sigma-model is weakly coupled when the level, conjecturally corresponding to one of the five-brane changes, becomes very large, keeping the other parameters fixed. The central charges of the large algebra agree, at least semiclassically, with expectations from the duality.more » « less
-
Abstract The production of a pair of τ leptons via photon–photon fusion, , is observed for the first time in proton–proton collisions, with a significance of 5.3 standard deviations. This observation is based on a data set recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb−1. Events with a pair of τ leptons produced via photon–photon fusion are selected by requiring them to be back-to-back in the azimuthal direction and to have a minimum number of charged hadrons associated with their production vertex. The τ leptons are reconstructed in their leptonic and hadronic decay modes. The measured fiducial cross section of is . Constraints are set on the contributions to the anomalous magnetic moment ( ) and electric dipole moments ( ) of the τ lepton originating from potential effects of new physics on the vertex: and (95% confidence level), consistent with the standard model.more » « less
-
Abstract Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ( ) events produced in proton–proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb−1. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observableDis derived from the top quark spin-dependent parts of the production density matrix and measured in the region of the production threshold. Values of are evidence of entanglement andDis observed (expected) to be ( ) at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.more » « less
-
Abstract A measurement of off-shell Higgs boson production in the decay channel is presented. The measurement uses 140 fb−1of proton–proton collisions at TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the decay channel at 68% CL is ( ). The evidence for off-shell Higgs boson production using the decay channel has an observed (expected) significance of 2.5σ(1.3σ). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of 0.5σ. When combined with the most recent ATLAS measurement in the decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of 3.7σ(2.4σ). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is ( ) MeV.more » « less
An official website of the United States government

