The bacterial orderMagnimaribacterales, previously known as the SAR86 lineage, is among the most abundant groups of planktonic bacteria inhabiting the global surface ocean. Despite their prevalence, our understanding of how this genetically diverse lineage partitions into units with coherent ecology and evolution remains limited. Here we surveyed multiple stations in the tropical Pacific Ocean using shotgun metagenomes and 16S rRNA gene amplicons to resolve distinct habitat preferences forMagnimaribacteraleslineages across nearshore, offshore, and open-ocean environments. The comprehensive collection of genomes that captured a large fraction of the known evolutionary breadth ofMagnimaribacterales, revealed patterns of ecotypic differentiation manifested primarily among genus-level clusters with specific clear preferences for distinct marine habitats. Enrichment analyses identified several functional genes associated with genomes from genera abundant in the nearshore environment, including those associated with sugar metabolism, peptide transport, and glycerophospholipid biosynthesis. Such metabolic adaptations likely facilitate the predominance of specificMagnimaribacteralesgenera in nearshore environments, promoting ecological partitioning across marine habitats.
more »
« less
Isolate-anchored comparisons reveal evolutionary and functional differentiation across SAR86 marine bacteria
Abstract SAR86 is one of the most abundant groups of bacteria in the global surface ocean. However, since its discovery over 30 years ago, it has remained recalcitrant to isolation and many details regarding this group are still unknown. Here, we report the cellular characteristics from the first SAR86 isolate brought into culture, Magnimaribacter mokuoloeensis strain HIMB1674, and use its closed genome in concert with over 700 environmental genomes to assess the phylogenomic and functional characteristics of this order-level lineage of marine Gammaproteobacteria. The SAR86 order Magnimaribacterales invests significant genomic resources into the capacity for $$\beta$$-oxidation, which is present in most genomes with high gene copy numbers. This cyclical set of reactions appears to be fed by components of cell membranes that include lipids such as phosphatidylcholine, phosphatidylethanolamine, glycolipids, and sulfolipids. In addition to the widespread capacity to degrade the side chain of steroidal compounds via $$\beta$$-oxidation, several SAR86 sublineages also appear able to fully degrade the steroid polycyclic ring structure as well as other aromatic, polycyclic, and heterocyclic molecules. Read recruitment from publicly available metagenomes reveals that the Magnimaribacterales compose up to 6% of the global surface ocean microbial community. Only a subset of genera drives these high relative abundances, with some more globally dominant and others restricted to specific oceanic regions. This study provides an unprecedented foundation through which to understand this highly abundant yet poorly understood lineage of marine bacteria and charts a path to bring more representatives of this order into laboratory culture.
more »
« less
- Award ID(s):
- 2149128
- PAR ID:
- 10556365
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1751-7362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract SAR86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central role in the function of marine ecosystems. We hypothesized that despite its ubiquity, different SAR86 subgroups may be endemic to specific ocean regions and functionally specialized for unique marine environments. However, the global biogeographical distributions of SAR86 genes, and the manner in which these distributions correlate with marine environments, have not been investigated. We quantified SAR86 gene content across globally distributed metagenomic samples and modeled these gene distributions as a function of 51 environmental variables. We identified five distinct clusters of genes within the SAR86 pangenome, each with a unique geographic distribution associated with specific environmental characteristics. Gene clusters are characterized by the strong taxonomic enrichment of distinct SAR86 genomes and partial assemblies, as well as differential enrichment of certain functional groups, suggesting differing functional and ecological roles of SAR86 ecotypes. We then leveraged our models and high-resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene clusters across the world’s oceans, creating global maps of SAR86 ecotype distributions. Our results reveal that SAR86 exhibits previously unknown, complex biogeography, and provide a framework for exploring geographic distributions of genetic diversity from other microbial clades.more » « less
-
ABSTRACT The Thaumarchaeota is a diverse archaeal phylum comprising numerous lineages that play key roles in global biogeochemical cycling, particularly in the ocean. To date, all genomically characterized marine thaumarchaea are reported to be chemolithoautotrophic ammonia oxidizers. In this study, we report a group of putatively heterotrophic marine thaumarchaea (HMT) with small genome sizes that is globally abundant in the mesopelagic, apparently lacking the ability to oxidize ammonia. We assembled five HMT genomes from metagenomic data and show that they form a deeply branching sister lineage to the ammonia-oxidizing archaea (AOA). We identify this group in metagenomes from mesopelagic waters in all major ocean basins, with abundances reaching up to 6% of that of AOA. Surprisingly, we predict the HMT have small genomes of ∼1 Mbp, and our ancestral state reconstruction indicates this lineage has undergone substantial genome reduction compared to other related archaea. The genomic repertoire of HMT indicates a versatile metabolism for aerobic chemoorganoheterotrophy that includes a divergent form III-a RuBisCO, a 2M respiratory complex I that has been hypothesized to increase energetic efficiency, and a three-subunit heme-copper oxidase complex IV that is absent from AOA. We also identify 21 pyrroloquinoline quinone (PQQ)-dependent dehydrogenases that are predicted to supply reducing equivalents to the electron transport chain and are among the most highly expressed HMT genes, suggesting these enzymes play an important role in the physiology of this group. Our results suggest that heterotrophic members of the Thaumarchaeota are widespread in the ocean and potentially play key roles in global chemical transformations. IMPORTANCE It has been known for many years that marine Thaumarchaeota are abundant constituents of dark ocean microbial communities, where their ability to couple ammonia oxidation and carbon fixation plays a critical role in nutrient dynamics. In this study, we describe an abundant group of putatively heterotrophic marine Thaumarchaeota (HMT) in the ocean with physiology distinct from those of their ammonia-oxidizing relatives. HMT lack the ability to oxidize ammonia and fix carbon via the 3-hydroxypropionate/4-hydroxybutyrate pathway but instead encode a form III-a RuBisCO and diverse PQQ-dependent dehydrogenases that are likely used to conserve energy in the dark ocean. Our work expands the scope of known diversity of Thaumarchaeota in the ocean and provides important insight into a widespread marine lineage.more » « less
-
Abstract Marine SAR116 bacterioplankton are ubiquitous in surface waters across global oceans and form their own order, Puniceispirillales, within the Alphaproteobacteria. To date no comparative physiology among diverse SAR116 isolates has been performed to capture the functional diversity within the clade, and further, diversity through the lens of metabolic potential and environmental preferences via clade-wide pangenomics continues to evolve with the addition of new genomes. Using high-throughput dilution-to-extinction cultivation, we isolated and genome sequenced five new and diverse SAR116 isolates from the northern Gulf of Mexico. Here we present a comparative physiological analysis of these SAR116 isolates, along with a pangenomic investigation of the SAR116 clade using a combination of metagenome-assembled genomes (MAGs, n = 258), single-amplified genomes (SAGs, n = 84), previously existing (n = 2), and new isolate genomes (n = 5), totaling 349 SAR116 genomes. Phylogenomic investigation supported the division of SAR116 into three distinct subclades, each with additional structure totaling 15 monophyletic groups. Our SAR116 isolates belonged to three groups within subclade I representing distinct genera with different morphologies and varied phenotypic responses to salinity and temperature. Overall, SAR116 genomes encoded differences in vitamin and amino acid synthesis, trace metal transport, and osmolyte synthesis and transport. They also had genetic potential for diverse sulfur oxidation metabolisms, placing SAR116 at the confluence of the organic and inorganic sulfur pools. SAR116 subclades showed distinct patterns in habitat preferences across open ocean, coastal, and estuarine environments, and three of our isolates represented the most abundant coastal and estuarine subclade. This investigation provides the most comprehensive exploration of SAR116 to date anchored by new culture genomes and physiology.more » « less
-
Abstract The bacterial orderPelagibacterales(SAR11) is among the most abundant and widely distributed microbial lineages across the global surface ocean, where it forms an integral component of the marine carbon cycle. However, the limited availability of high-quality genomes has hampered comprehensive insights into the ecology and evolutionary history of this critical group. Here, we increase the number of complete SAR11 isolate genomes fourfold by describing 81 new SAR11 strains from seven distinct lineages isolated from coastal and offshore surface seawater of the tropical Pacific Ocean. We leveraged comprehensive phylogenomic insights afforded by these isolates to characterize 24 monophyletic, discrete ecotypes with unique spatiotemporal patterns of distribution across the global ocean, which we define as genera. Our data illustrate fine-scale differentiation in patterns of detection with ecologically-relevant gene content variation for some closely related genomes, demonstrating instances of ecological speciation within SAR11 genera. Our study provides unique insight into complex environmental SAR11 populations, and proposes an ecology-informed hierarchy to pave a path forward for the systematic nomenclature for this clade.more » « less
An official website of the United States government
