skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global ecotypes in the ubiquitous marine clade SAR86
Abstract SAR86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central role in the function of marine ecosystems. We hypothesized that despite its ubiquity, different SAR86 subgroups may be endemic to specific ocean regions and functionally specialized for unique marine environments. However, the global biogeographical distributions of SAR86 genes, and the manner in which these distributions correlate with marine environments, have not been investigated. We quantified SAR86 gene content across globally distributed metagenomic samples and modeled these gene distributions as a function of 51 environmental variables. We identified five distinct clusters of genes within the SAR86 pangenome, each with a unique geographic distribution associated with specific environmental characteristics. Gene clusters are characterized by the strong taxonomic enrichment of distinct SAR86 genomes and partial assemblies, as well as differential enrichment of certain functional groups, suggesting differing functional and ecological roles of SAR86 ecotypes. We then leveraged our models and high-resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene clusters across the world’s oceans, creating global maps of SAR86 ecotype distributions. Our results reveal that SAR86 exhibits previously unknown, complex biogeography, and provide a framework for exploring geographic distributions of genetic diversity from other microbial clades.  more » « less
Award ID(s):
1736772
PAR ID:
10485655
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
14
Issue:
1
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 178-188
Size(s):
p. 178-188
Sponsoring Org:
National Science Foundation
More Like this
  1. The bacterial orderMagnimaribacterales, previously known as the SAR86 lineage, is among the most abundant groups of planktonic bacteria inhabiting the global surface ocean. Despite their prevalence, our understanding of how this genetically diverse lineage partitions into units with coherent ecology and evolution remains limited. Here we surveyed multiple stations in the tropical Pacific Ocean using shotgun metagenomes and 16S rRNA gene amplicons to resolve distinct habitat preferences forMagnimaribacteraleslineages across nearshore, offshore, and open-ocean environments. The comprehensive collection of genomes that captured a large fraction of the known evolutionary breadth ofMagnimaribacterales, revealed patterns of ecotypic differentiation manifested primarily among genus-level clusters with specific clear preferences for distinct marine habitats. Enrichment analyses identified several functional genes associated with genomes from genera abundant in the nearshore environment, including those associated with sugar metabolism, peptide transport, and glycerophospholipid biosynthesis. Such metabolic adaptations likely facilitate the predominance of specificMagnimaribacteralesgenera in nearshore environments, promoting ecological partitioning across marine habitats. 
    more » « less
  2. Abstract SAR86 is one of the most abundant groups of bacteria in the global surface ocean. However, since its discovery over 30 years ago, it has remained recalcitrant to isolation and many details regarding this group are still unknown. Here, we report the cellular characteristics from the first SAR86 isolate brought into culture, Magnimaribacter mokuoloeensis strain HIMB1674, and use its closed genome in concert with over 700 environmental genomes to assess the phylogenomic and functional characteristics of this order-level lineage of marine Gammaproteobacteria. The SAR86 order Magnimaribacterales invests significant genomic resources into the capacity for $$\beta$$-oxidation, which is present in most genomes with high gene copy numbers. This cyclical set of reactions appears to be fed by components of cell membranes that include lipids such as phosphatidylcholine, phosphatidylethanolamine, glycolipids, and sulfolipids. In addition to the widespread capacity to degrade the side chain of steroidal compounds via $$\beta$$-oxidation, several SAR86 sublineages also appear able to fully degrade the steroid polycyclic ring structure as well as other aromatic, polycyclic, and heterocyclic molecules. Read recruitment from publicly available metagenomes reveals that the Magnimaribacterales compose up to 6% of the global surface ocean microbial community. Only a subset of genera drives these high relative abundances, with some more globally dominant and others restricted to specific oceanic regions. This study provides an unprecedented foundation through which to understand this highly abundant yet poorly understood lineage of marine bacteria and charts a path to bring more representatives of this order into laboratory culture. 
    more » « less
  3. ABSTRACT Phage-plasmids are unique mobile genetic elements that function as plasmids and temperate phages. While it has been observed that such elements often encode antibiotic resistance genes and defense system genes, little else is known about other functional traits they encode. Further, no study to date has documented their environmental distribution and prevalence. Here, we performed genome sequence mining of public databases of phages and plasmids utilizing a random forest classifier to identify phage-plasmids. We recovered 5,742 unique phage-plasmid genomes from a remarkable array of disparate environments, including human, animal, plant, fungi, soil, sediment, freshwater, wastewater, and saltwater environments. The resulting genomes were used in a comparative sequence analysis, revealing functional traits/accessory genes associated with specific environments. Host-associated elements contained the most defense systems (including CRISPR and anti-CRISPR systems) as well as antibiotic resistance genes, while other environments, such as freshwater and saltwater systems, tended to encode components of various biosynthetic pathways. Interestingly, we identified genes encoding for certain functional traits, including anti-CRISPR systems and specific antibiotic resistance genes, that were enriched in phage-plasmids relative to both plasmids and phages. Our results highlight that phage-plasmids are found across a wide-array of environments and likely play a role in shaping microbial ecology in a multitude of niches. IMPORTANCEPhage-plasmids are a novel, hybrid class of mobile genetic element which retain aspects of both phages and plasmids. However, whether phage-plasmids represent merely a rarity or are instead important players in horizontal gene transfer and other important ecological processes has remained a mystery. Here, we document that these hybrids are encountered across a broad range of distinct environments and encode niche-specific functional traits, including the carriage of antibiotic biosynthesis genes and both CRISPR and anti-CRISPR defense systems. These findings highlight phage-plasmids as an important class of mobile genetic element with diverse roles in multiple distinct ecological niches. 
    more » « less
  4. Acidification‐induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2. In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish,Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight‐day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that interindividual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification. 
    more » « less
  5. The global rise of antimicrobial resistance has intensified efforts in bioprospecting, with researchers increasingly exploring unique marine environments for novel antimicrobials. In line with this trend, our study focused on bacteria isolated from the unique microbiome of crustose coralline algae (CCA), which has yet to be investigated for antimicrobial discovery. In the present work, bacteria were isolated from a CCA collected from Varadero Reef located in Cartagena Bay, Colombia. After performing antimicrobial assays against antibiotic-resistant human and marine pathogens, three isolates were selected for genome sequencing using the Oxford Nanopore technology. Genome mining of the high-quality assemblies revealed 115 putative biosynthetic gene clusters (BGCs) and identified genes in relevant biosynthetic pathways across the three genomes. Nonetheless, we hypothesize that the biosynthesis of antimicrobial compounds results from the expression of undescribed BGCs. Further analysis revealed the absence of genes pertaining to the synthesis of coral larvae settling molecule tetrabromopyrrole, commonly produced by CCA-associated bacteria. We also discuss how differential representation of gene functions between the three isolates may be attributed to the distinct ecological niches they occupy within the CCA. This study provides valuable resources for future research aimed at the discovery of novel antimicrobials, particularly in the face of the antibiotic-resistance global crisis, and highlights the potential of specialized marine environments like CCA. 
    more » « less