Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability.
more »
« less
Long‐Term Alpine Plant Responses to Global Change Drivers Depend on Functional Traits
ABSTRACT Forecasting plant responses under global change is a critical but challenging endeavour. Despite seemingly idiosyncratic responses of species to global change, greater generalisation of ‘winners’ and ‘losers’ may emerge from considering how species functional traits influence responses and how these responses scale to the community level. Here, we synthesised six long‐term global change experiments combined with locally measured functional traits. We quantified the change in abundance and probability of establishment through time for 70 alpine plant species and then assessed if leaf and stature traits were predictive of species and community responses across nitrogen addition, snow addition and warming treatments. Overall, we found that plants with more resource‐acquisitive trait strategies increased in abundance but each global change factor was related to different functional strategies. Nitrogen addition favoured species with lower leaf nitrogen, snow addition favoured species with cheaply constructed leaves and warming showed few consistent trends. Community‐weighted mean changes in trait values in response to nitrogen addition, snow addition and warming were often different from species‐specific trait effects on abundance and establishment, reflecting in part the responses and traits of dominant species. Together, these results highlight that the effects of traits can differ by scale and response of interest.
more »
« less
- Award ID(s):
- 2224439
- PAR ID:
- 10556417
- Publisher / Repository:
- John Wiley & Sons Ltd
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 10
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Predicting shifts in species composition with global change remains challenging, but plant functional traits provide a key link to scale from plant to community and ecosystem levels. The extent to which functional trait shifts may mediate ecosystem response to climate change remains a critical question.We ran point‐scale Community Land Model (CLM) simulations with site‐specific functional trait and phenology observations to represent alpine tundra growth strategies. We validated our results with site observations and compared parameterized results to those using the default parameterization. We then quantified the relative contribution of plant functional trait shifts vs climate change scenarios (and the resulting phenological shifts) to uncertainty in future tundra ecosystem productivity outcomes.We found that using community‐specific functional traits and phenology observations significantly improved productivity estimates compared with overestimates in a default simulation. Uncertainty in potential plant trait shifts often had a larger effect on ecosystem productivity responses than uncertainty in the forced response from different climate change scenarios.These findings highlight the key role of functional traits in shaping vegetation responses to climate change and the value of incorporating site‐level measurements into land models to more accurately forecast climate change impacts on ecosystem function.more » « less
-
Abstract Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.more » « less
-
Abstract Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes. However, root trait dynamics are poorly understood, especially in tropical ecosystems. We analyzed existing research on tropical root responses to key global change drivers: warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Based on tree species‐ and community‐level literature, we obtained 266 root trait observations from 93 studies across 24 tropical countries. We found differences in the proportion of root responsiveness to global change among different global change drivers but not among root categories. In particular, we observed that tropical root systems responded to warming and eCO2by increasing root biomass in species‐scale studies. Drought increased the root: shoot ratio with no change in root biomass, indicating a decline in aboveground biomass. Despite N deposition being the most studied global change driver, it had some of the most variable effects on root characteristics, with few predictable responses. Episodic disturbances such as cyclones, fires, and flooding consistently resulted in a change in root trait expressions, with cyclones and fires increasing root production, potentially due to shifts in plant community and nutrient inputs, while flooding changed plant regulatory metabolisms due to low oxygen conditions. The data available to date clearly show that tropical forest root characteristics and dynamics are responding to global change, although in ways that are not always predictable. This synthesis indicates the need for replicated studies across root characteristics at species and community scales under different global change factors.more » « less
-
ABSTRACT In order to better predict climate change effects on plants and their communities, we need to improve our understanding of how various plant traits and community properties respond to warming, as well as what contexts contribute to variation in these responses. To address this knowledge gap, we compiled data from 126 in situ passive experimental warming studies on 13 different plant trait and community property responses. We then collected metadata from these studies to define 9 different study contexts spanning environmental, experimental, and plant‐level scales. We find that, globally, some traits decrease when warmed (e.g., aboveground N content), while others increase (e.g., plant biomass). We also identify contexts that contribute to variation in plant responses to warming, such as latitude, distance from northern range edge, and plant functional group, but the importance of these contexts varies based on the trait or community property measured. For example, as latitude increases, the effect of warming on reproductive traits becomes stronger, but this latitude‐trait relationship did not hold for all traits. Our study highlights how multiple plant traits and community properties respond to warming across the globe, the importance of carefully designing and interpreting the outcomes of climate change experiments, and the need for coordinated warming experiments across varying environmental contexts in order to mechanistically understand and predict plant community responses to climate warming.more » « less
An official website of the United States government

