skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: A Global Meta‐Analysis of Passive Experimental Warming Effects on Plant Traits and Community Properties
ABSTRACT In order to better predict climate change effects on plants and their communities, we need to improve our understanding of how various plant traits and community properties respond to warming, as well as what contexts contribute to variation in these responses. To address this knowledge gap, we compiled data from 126 in situ passive experimental warming studies on 13 different plant trait and community property responses. We then collected metadata from these studies to define 9 different study contexts spanning environmental, experimental, and plant‐level scales. We find that, globally, some traits decrease when warmed (e.g., aboveground N content), while others increase (e.g., plant biomass). We also identify contexts that contribute to variation in plant responses to warming, such as latitude, distance from northern range edge, and plant functional group, but the importance of these contexts varies based on the trait or community property measured. For example, as latitude increases, the effect of warming on reproductive traits becomes stronger, but this latitude‐trait relationship did not hold for all traits. Our study highlights how multiple plant traits and community properties respond to warming across the globe, the importance of carefully designing and interpreting the outcomes of climate change experiments, and the need for coordinated warming experiments across varying environmental contexts in order to mechanistically understand and predict plant community responses to climate warming.  more » « less
Award ID(s):
2224712
PAR ID:
10613631
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
31
Issue:
6
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass ( Zostera marina ) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change. 
    more » « less
  2. Plant traits are useful for predicting how species may respond to environmental change and/or influence ecosystem properties. Understanding the extent to which traits vary within species and across climatic gradients is particularly important for understanding how species may respond to climate change. We explored whether climate drives spatial patterns of intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined distribution across six continents. We tested the hypothesis that the sensitivity (i.e. slope) of intraspecific trait responses to climate across space would be related to the species' typical form and function (e.g. leaf economics, stature and lifespan). We observed both positive and negative intraspecific trait responses to climate with the distribution of slope coefficients across species straddling zero for precipitation, temperature and climate seasonality. As hypothesized, variation in slope coefficients across species was partially explained by leaf economics and lifespan. For example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions with high precipitation seasonality (PS). Thus, while the influence of climate on trait expression may at first appear idiosyncratic, variation in trait–climate slope coefficients is at least partially explained by the species' typical form and function. Overall, our results suggest that a species' mean location along one axis of trait variation (e.g. leaf economics) could influence how traits along a separate axis of variation (e.g. plant size) respond to spatial variation in climate. 
    more » « less
  3. Abstract Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground. 
    more » « less
  4. Cooke, Steve (Ed.)
    Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations. 
    more » « less
  5. Henn, J (Ed.)
    Abstract Intraspecific trait variation can influence plant performance in different environments and may thereby determine the ability of individual plants to respond to climate change. However, our understanding of its patterns and environmental drivers across different spatial scales is incomplete, especially in understudied regions like the Arctic.To fill this knowledge gap, we examined above‐ground and below‐ground traits from three shrub taxa expanding across the tundra biome and evaluated their relationships with multiple microenvironmental and macroclimatic factors. The traits reflected plant size and structure (plant height, leaf area and root to shoot ratio), leaf economics (specific leaf area, nitrogen content), and root economics and collaboration with mycorrhizal fungi (specific root length, root tissue density, nitrogen content, and ectomycorrhizal colonisation intensity). We also measured leaf and root δ15N and leaf δ13C to characterise nitrogen source and acquisition pathways and plant water stress. Traits were measured in replicated plots (N = 135) varying in soil microclimate, thaw depth and organic layer thickness established across five sites spanning a macroclimate gradient in northern Alaska. This hierarchical design allowed us to disentangle the independent and combined effects of fine‐scale and broad‐scale factors on intraspecific trait variation.We found substantial intraspecific variation at fine spatial scales for most traits and less variation along the macroclimate gradient and between shrub taxa. Consistent with these patterns, microenvironmental factors, mainly soil moisture and thaw depth, interacted with macroclimate, mainly climatic water deficit, to structure size‐structural and leaf trait variation. In contrast, most root traits responded additively to thaw depth and macroclimate.Synthesis. Our results demonstrate that above‐ground and below‐ground tundra shrub traits respond differently to microenvironmental and macroclimatic variation. These differing responses contribute to substantial trait variation at fine spatial scales and may decouple above‐ground and below‐ground trait responses to climate change. 
    more » « less