skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2025

Title: First application of a liquid argon time projection chamber for the search for intranuclear neutron-antineutron transitions and annihilation in 40 Ar using the MicroBooNE detector
Abstract We present a novel methodology to search for intranuclear neutron-antineutron transition (n⟶n̅) followed byn̅-nucleon annihilation within an40Ar nucleus, using the MicroBooNE liquid argon time projection chamber (LArTPC) detector. A discovery of n⟶n̅transition or a new best limit on the lifetime of this process would either constitute physics beyond the Standard Model or greatly constrain theories of baryogenesis, respectively. The approach presented in this paper makes use of deep learning methods to select n⟶n̅events based on their unique features and differentiate them from cosmogenic backgrounds. The achieved signal and background efficiencies are (70.22 ± 6.04)% and (0.0020 ± 0.0003)%, respectively. A demonstration of a search is performed with a data set corresponding to an exposure of 3.32 ×1026neutron-years, and where the background rate is constrained through direct measurement, assuming the presence of a negligible signal. With this approach, no excess of events over the background prediction is observed, setting a demonstrative lower bound on the n⟶n̅lifetime in40Ar of τm≳ 1.1×1026years, and on the free n⟶n̅transition time of τn⟶n̅≳ 2.6×105s, each at the 90% confidence level. This analysis represents a first-ever proof-of-principle demonstration of the ability to search for this rare process in LArTPCs with high efficiency and low background.  more » « less
Award ID(s):
2209601 2047665
PAR ID:
10556456
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
IOP
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
19
Issue:
07
ISSN:
1748-0221
Page Range / eLocation ID:
P07032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at$$ \sqrt{s} $$ s = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb−1collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 <mN< 3 GeV and decay lengths in the range 10−2<cτN< 104mm, where τNis the N proper mean lifetime. Signal events are defined by the signature B →ℓBNX; N →ℓ±π, where the leptonsℓBandℓcan be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of theℓ±πinvariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, |VN|2, and oncτNare obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit|VN|2< 2.0×10−5is obtained atmN= 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on|VN|2for masses 1 <mN< 1.7 GeV are the most stringent from a collider experiment to date. 
    more » « less
  2. Mattoon, C.M.; Vogt, R.; Escher, J.; Thompson, I. (Ed.)
    The cross-section of the thermal neutron capture41Ar(n,γ)42Ar(t1/2=32.9 y) reaction was measured by irradiating a40Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV γ-lines of the shorter-lived42K(12.4 h) βdaughter of42Ar. Our preliminary value of the41Ar(n,γ)42Ar thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of42Ar was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA. 
    more » « less
  3. A<sc>bstract</sc> A search for a new heavy scalar particleXdecaying into a Standard Model (SM) Higgs boson and a new singlet scalar particleSis presented. The search uses a proton-proton (pp) collision data sample with an integrated luminosity of 140 fb−1recorded at a centre-of-mass energy of$$ \sqrt{s} $$ s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The most sensitive mass parameter space is explored inXmass ranging from 500 to 1500 GeV, with the correspondingSmass in the range 200–500 GeV. The search selects events with two hadronically decayingτ-lepton candidates fromH→τ+τdecays and one or two light leptons (ℓ=e,μ) fromS→VV(V=W,Z) decays while the remainingVboson decays hadronically or to neutrinos. A multivariate discriminant based on event kinematics is used to separate the signal from the background. No excess is observed beyond the expected SM background and 95% confidence level upper limits between 72 fb and 542 fb are derived on the cross-sectionσ(pp→X→SH) assuming the same SM-Higgs boson-like decay branching ratios for theS→VVdecay. Upper limits on the visible cross-sectionsσ(pp→X→SH→WWττ) andσ(pp→X→SH→ZZττ) are also set in the ranges 3–26 fb and 6–33 fb, respectively. 
    more » « less
  4. We performed a n − ¯n oscillation search with SK-I-IV data using a multivariate analysis. Compared to previous results [15], the updated final state interaction model predicts fewer pions and less separation between signal and neutrino backgrounds. With the advanced MVA method and the inclusion of multiple new variables, the sensitivity of this analysis is still greatly enhanced. For the 0.37 megaton-year exposure at SK, we observed 11 events with an expected background of 9.3  2.7 events. There is no statistically significant excess of data events, so a lower limit on the neutron lifetime is set at 3.6 × 1032 years at 90% C.L., corresponding to a lower limit on the neutron-antineutron oscillation time in 16O of τn→¯n > 4.7 × 108 s. This is the world’s most stringent limit on neutron-antineutron oscillation so far, with 90% improvement from the previous best limit [15], and is reaching the predicted parameter space of some theoretical models. 
    more » « less
  5. Freeman, S.; Lederer-Woods, C.; Manna, A.; Mengoni, A. (Ed.)
    The thermodynamical conditions and the neutron density produced in a laser-induced implosion of a deuterium-tritium (DT) filled capsule at the National Ignition Facility (NIF) are the closest laboratory analog of stellar conditions. We plan to investigate neutron-induced reactions on 40 Ar, namely the 40 Ar( n , 2 n ) 39 Ar( t 1/2 =268 y), the 40 Ar( n , γ) 41 Ar(110 min) and the potential rapid two-neutron capture reaction 40 Ar(2 n , γ) 42 Ar(33 y) in an Ar-loaded DT capsule. The chemical inertness of noble gas Ar enables reliable collection of the reaction products. 
    more » « less