Abstract Harmful algal blooms (HABs) produce neurotoxins that affect human health. Developmental exposure of zebrafish embryos to the HAB toxin domoic acid (DomA) causes myelin defects, loss of reticulospinal neurons, and behavioral deficits. However, it is unclear whether DomA primarily targets myelin sheaths, leading to the loss of reticulospinal neurons, or reticulospinal neurons, causing myelin defects. Here, we show that while exposure to DomA at 2 dpf did not reduce the number of oligodendrocyte precursors prior to myelination, it led to fewer myelinating oligodendrocytes that produced shorter myelin sheaths and aberrantly wrapped neuron cell bodies. DomA-exposed larvae lacked Mauthner neurons prior to the onset of myelination, suggesting that axonal loss is not secondary to myelin defects. The loss of the axonal targets may have led oligodendrocytes to inappropriately myelinate neuronal cell bodies. Consistent with this, GANT61, a GLI1/2 inhibitor that reduces oligodendrocyte number, caused a reduction in aberrantly myelinated neuron cell bodies in DomA-exposed fish. Together, these results suggest that DomA initially alters reticulospinal neurons and the loss of axons causes aberrant myelination of nearby cell bodies. The identification of initial targets and perturbed cellular processes provides a mechanistic understanding of how DomA alters neurodevelopment, leading to structural and behavioral phenotypes.
more »
« less
This content will become publicly available on December 1, 2025
Developmental exposure of zebrafish to saxitoxin causes altered expression of genes associated with axonal growth
Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP). Humans are among the species most sensitive to PSP; neurological symptoms of exposure range from tingling of the extremities to severe paralysis. The objective of this study was to determine the effects of STX exposure on developmental processes during early embryogenesis. This study was designed to test the hypothesis that early developmental exposure to STX would disrupt key processes, particularly those related to neural development. Zebrafish embryos were exposed to STX (24 or 48 pg) or vehicle (0.3 mM HCl) at 6 hours post fertilization (hpf) via microinjection. There was no overt toxicity but starting at 36 hpf there was a temporary lack of pigmentation in STX-injected embryos, which resolved by 72 hpf. Using high performance liquid chromatography, we found that STX was retained in embryos up to 72 hpf in a dose-dependent manner. Temporal transcriptional profiling of embryos exposed to 48 pg STX per embryo revealed no differentially expressed genes (DEGs) at 24 hpf, but at 36 and 48 hpf, there were 3547 and 3356 DEGs, respectively. KEGG pathway
analysis revealed significant enrichment of genes related to focal adhesion, adherens junction and regulation of
actin cytoskeleton, suggesting that cell-cell and cell-extracellular matrix interactions were affected by STX. Genes affected are critical for axonal growth and the
development of functional neural
networks. We confirmed these findings by visualizing axonal defects in transgenic zebrafish with fluorescently labeled sensory neurons. In addition, our gene expression results suggest that STX exposure affects both canonical and noncanonical functions of VGSCs. Given the fundamental role of VGSCs in both physiology and development, these findings offer valuable insights into effects of exposure to neurotoxins.
more »
« less
- PAR ID:
- 10556461
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- NeuroToxicology
- Volume:
- 105
- Issue:
- C
- ISSN:
- 0161-813X
- Page Range / eLocation ID:
- 303 to 312
- Subject(s) / Keyword(s):
- harmful algal bloom toxin cyanobacterial toxin RNAseq extracellular matrix
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundMorphologic sex differences between males and females typically emerge after the primordial germ cell migration and gonad formation, although sex is determined at fertilization based on chromosome composition. A key debated sexual difference is the embryonic developmental rate, within vitroproduced male embryos often developing faster. However, the molecular mechanisms driving early embryonic sex differences remain unclear. ResultsTo investigate the transcriptional sex difference during early development,in vitroproduced bovine blastocysts were collected and sexed by PCR. A significant male-biased development was observed in expanded blastocysts. Ultra-low input RNA-seq analysis identified 837 DEGs, with 231 upregulated and 606 downregulated in males. Functional enrichment analysis revealed male-biased DEGs were associated with metabolic regulation, whereas female-biased DEGs were related to female gonad development, sex differentiation, inflammatory pathways, and TGF-beta signaling. Comparing X chromosome and autosome expression ratio, we found that female-biased DEGs contributed to the higher X-linked gene dosage, a phenomenon not observed in male embryos. Moreover, we identified the sex-biased transcription factors and RNA-bind proteins, including pluripotent factors such asSOX21andPRDM14, and splicing factorsFMR1andHNRNPH2. Additionally, we revealed 1,555 significantly sex-biased differential alternative splicing (AS), predominantly skipped exons, mapped to 906 genes, with 59 overlapping with DEGs enriched in metabolic and autophagy pathways. By incorporating novel isoforms from long reads sequencing, we identified 1,151 sex-biased differentially expressed isoforms (DEIs) associated with 1,017 genes. Functional analysis showed that female-biased DEIs were involved in the negative regulation of transcriptional activity, while male-biased DEIs were related to energy metabolism. Furthermore, we identified sex-biased differential exon usage inDENND1B, DIS3L2, DOCK11, IL1RAPL2,andZRSR2Y,indicating their sex-specific regulation in early embryo development. ConclusionThis study provided a comprehensive analysis of transcriptome differences between male and female bovine blastocysts, integrating sex-biased gene expression, alternative splicing, and isoform dynamics. Our findings indicate that enriched metabolism processes in male embryos may contribute to the faster developmental pace, providing insights into sex-specific regulatory mechanisms during early embryogenesis. Plain English summaryMale and female early embryos develop at different speeds, with male embryos often developing faster than female embryos. However, the reasons behind these early differences remain unclear. In this study, we examined gene activity in bovine embryos to uncover the biological factors regulating these early sex differences. We collected in vitro-produced bovine blastocysts, examined their sex, and confirmed that male embryos develop faster. By analyzing global gene activity, including alternative splicing, which allows one gene to code for multiple RNA isoforms and proteins, we found distinct gene expression profiles between male and female embryos. Male embryos showed higher activity in genes related to metabolism and cellular functions, while female embryos had increased activity in genes associated with female-specific gonad development and gene expression regulation. We also examined differences in how genes on the X chromosome were expressed. Female embryos had higher X-linked gene expression, which may contribute to sex-specific developmental regulation. Additionally, we identified sex-specific transcription factors and RNA-binding proteins that regulate early embryo development, some of which are known to control pluripotency and gene splicing. Overall, our study provides new insights into how gene activity shapes early sex differences, suggesting that enhanced metabolism in male embryos may be a key driver of their faster developmental rate. HighlightsMale embryos develop faster due to increased gene expression in metabolism pathwaysFemale embryos exhibit higher X-linked gene expression, suggesting X-dosage compensation plays a role in early developmentSex-biased alternative splicing events contribute to embryonic metabolism, autophagy, and transcriptional regulation in embryosSex-biased isoform diversity contributes to distinct developmental regulation in male and female embryosKey pluripotency factors (SOX21, PRDM14) and splicing regulators (FMR1, HNRNPH2) drive sex-specific gene expressionmore » « less
-
null (Ed.)Abstract Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3′ UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3′ UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.more » « less
-
The biological basis of lateralized cranial aberrations can be rooted in early asymmetric patterning of developmental tissues. However, precisely how development impacts natural cranial asymmetries remains incompletely understood. Here, we examined embryonic patterning of the cranial neural crest at two phases of embryonic development in a natural animal system with two morphotypes: cave-dwelling and surface-dwelling fish. Surface fish are highly symmetric with respect to cranial form at adulthood, however adult cavefish harbor diverse cranial asymmetries. To examine if lateralized aberrations of the developing neural crest underpin these asymmetries, we used an automated technique to quantify the area and expression level of cranial neural crest markers on the left and right sides of the embryonic head. We examined the expression of marker genes encoding both structural proteins and transcription factors at two key stages of development: 36 hpf (∼mid-migration of the neural crest) and 72 hpf (∼early differentiation of neural crest derivatives). Interestingly, our results revealed asymmetric biases at both phases of development in both morphotypes, however consistent lateral biases were less common in surface fish as development progressed. Additionally, this work provides the information on neural crest development, based on whole-mount expression patterns of 19 genes, between stage-matched cave and surface morphs. Further, this study revealed ‘asymmetric’ noise as a likely normative component of early neural crest development in natural Astyanax fish. Mature cranial asymmetries in cave morphs may arise from persistence of asymmetric processes during development, or as a function of asymmetric processes occurring later in the life history.more » « less
-
Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.more » « less
An official website of the United States government
