skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AC power flow feasibility restoration via a state estimation-based post-processing algorithm
This paper presents an algorithm for restoring AC power flow feasibility from solutions to simplified optimal power flow (OPF) problems, including convex relaxations, power flow approximations, and machine learning (ML) models. The proposed algorithm employs a state estimation-based post-processing technique in which voltage phasors, power injections, and line flows from solutions to relaxed, approximated, or ML-based OPF problems are treated similarly to noisy measurements in a state estimation algorithm. The algorithm leverages information from various quantities to obtain feasible voltage phasors and power injections that satisfy the AC power flow equations. Weight and bias parameters are computed offline using an adaptive stochastic gradient descent method. By automatically learning the trustworthiness of various outputs from simplified OPF problems, these parameters inform the online computations of the state estimation-based algorithm to both recover feasible solutions and characterize the performance of power flow approximations, relaxations, and ML models. Furthermore, the proposed algorithm can simultaneously utilize combined solutions from different relaxations, approximations, and ML models to enhance performance. Case studies demonstrate the effectiveness and scalability of the proposed algorithm, with solutions that are both AC power flow feasible and much closer to the true AC OPF solutions than alternative methods, often by several orders of magnitude in the squared two-norm loss function.  more » « less
Award ID(s):
2145564
PAR ID:
10556507
Author(s) / Creator(s):
;
Publisher / Repository:
Power Systems Computation Conference (PSCC)
Date Published:
Journal Name:
Electric Power Systems Research
Volume:
235
Issue:
C
ISSN:
0378-7796
Page Range / eLocation ID:
110642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasing levels of renewable generation motivate a growing interest in data-driven approaches for AC optimal power flow (AC OPF) to manage uncertainty; however, a lack of disciplined dataset creation and benchmarking prohibits useful comparison among approaches in the literature. To instill confidence, models must be able to reliably predict solutions across a wide range of operating conditions. This paper develops the OPF-Learn package for Julia and Python, which uses a computationally efficient approach to create representative datasets that span a wide spectrum of the AC OPF feasible region. Load profiles are uniformly sampled from a convex set that contains the AC OPF feasible set. For each infeasible point found, the convex set is reduced using infeasibility certificates, found by using properties of a relaxed formulation. The framework is shown to generate datasets that are more representative of the entire feasible space versus traditional techniques seen in the literature, improving machine learning model performance. 
    more » « less
  2. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less
  3. Micro-grids’ operations offer local reliability; in the event of faults or low voltage/frequency events on the utility side, micro-grids can disconnect from the main grid and operate autonomously while providing a continued supply of power to local customers. With the ever-increasing penetration of renewable generation, however, operations of micro-grids become increasingly complicated because of the associated fluctuations of voltages. As a result, transformer taps are adjusted frequently, thereby leading to fast degradation of expensive tap-changer transformers. In the islanding mode, the difficulties also come from the drop in voltage and frequency upon disconnecting from the main grid. To appropriately model the above, non-linear AC power flow constraints are necessary. Computationally, the discrete nature of tap-changer operations and the stochasticity caused by renewables add two layers of difficulty on top of a complicated AC-OPF problem. To resolve the above computational difficulties, the main principles of the recently developed “l1-proximal” Surrogate Lagrangian Relaxation are extended. Testing results based on the nine-bus system demonstrate the efficiency of the method to obtain the exact feasible solutions for micro-grid operations, thereby avoiding approximations inherent to existing methods; in particular, fast convergence of the method to feasible solutions is demonstrated. It is also demonstrated that through the optimization, the number of tap changes is drastically reduced, and the method is capable of efficiently handling networks with meshed topologies. 
    more » « less
  4. AC Optimal Power Flow (AC-OPF) is a fundamental building block in power system optimization. It is often solved repeatedly, especially in regions with large penetration of renewable generation, to avoid violating operational limits. Recent work has shown that deep learning can be effective in providing highly accurate approximations of AC-OPF. However, deep learning approaches may suffer from scalability issues, especially when applied to large realistic grids. This paper addresses these scalability limitations and proposes a load embedding scheme using a 3-step approach. The first step formulates the load embedding problem as a bilevel optimization model that can be solved using a penalty method. The second step learns the encoding optimization to quickly produce load embeddings for new OPF instances. The third step is a deep learning model that uses load embeddings to produce accurate AC-OPF approximations. The approach is evaluated experimentally on large-scale test cases from the NESTA library. The results demonstrate that the proposed approach produces an order of magnitude improvements in training convergence and prediction accuracy. 
    more » « less
  5. o shift the computational burden from real-time to offline in delay-critical power systems applications, recent works entertain the idea of using a deep neural network (DNN) to predict the solutions of the AC optimal power flow (AC-OPF) once presented load demands. As network topologies may change, training this DNN in a sample-efficient manner becomes a necessity. To improve data efficiency, this work utilizes the fact OPF data are not simple training labels, but constitute the solutions of a parametric optimization problem. We thus advocate training a sensitivity-informed DNN (SI-DNN) to match not only the OPF optimizers, but also their partial derivatives with respect to the OPF parameters (loads). It is shown that the required Jacobian matrices do exist under mild conditions, and can be readily computed from the related primal/dual solutions. The proposed SI-DNN is compatible with a broad range of OPF solvers, including a non-convex quadratically constrained quadratic program (QCQP), its semidefinite program (SDP) relaxation, and MATPOWER; while SI-DNN can be seamlessly integrated in other learning-to-OPF schemes. Numerical tests on three benchmark power systems corroborate the advanced generalization and constraint satisfaction capabilities for the OPF solutions predicted by an SI-DNN over a conventionally trained DNN, especially in low-data setups. 
    more » « less