skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Prediction of plant complex traits via integration of multi-omics data
The formation of complex traits is the consequence of genotype and activities at multiple molecular levels. However, connecting genotypes and these activities to complex traits remains challenging. Here, we investigate whether integrating genomic, transcriptomic, and methylomic data can improve pre- diction for six Arabidopsis traits. We find that transcriptome- and methylome- based models have performances comparable to those of genome-based models. However, models built for flowering time using different omics data identify different benchmark genes. Nine additional genes identified as important for flowering time from our models are experimentally validated as regulating flowering. Gene contributions to flowering time prediction are accession-dependent and distinct genes contribute to trait prediction in dif- ferent genotypes. Models integrating multi-omics data perform best and reveal known and additional gene interactions, extending knowledge about existing regulatory networks underlying flowering time determination. These results demonstrate the feasibility of revealing molecular mechanisms underlying complex traits through multi-omics data integration.  more » « less
Award ID(s):
2218206 2107215 2210431
PAR ID:
10556560
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Press
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Page Range / eLocation ID:
6856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A large number of genetic variations have been identified to be associated with Alzheimer’s disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of ‘vision’, a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes. 
    more » « less
  2. Abstract Integrating single-cell multi-omics data is a challenging task that has led to new insights into complex cellular systems. Various computational methods have been proposed to effectively integrate these rapidly accumulating datasets, including deep learning. However, despite the proven success of deep learning in integrating multi-omics data and its better performance over classical computational methods, there has been no systematic study of its application to single-cell multi-omics data integration. To fill this gap, we conducted a literature review to explore the use of multimodal deep learning techniques in single-cell multi-omics data integration, taking into account recent studies from multiple perspectives. Specifically, we first summarized different modalities found in single-cell multi-omics data. We then reviewed current deep learning techniques for processing multimodal data and categorized deep learning-based integration methods for single-cell multi-omics data according to data modality, deep learning architecture, fusion strategy, key tasks and downstream analysis. Finally, we provided insights into using these deep learning models to integrate multi-omics data and better understand single-cell biological mechanisms. 
    more » « less
  3. Accurate cancer subtype prediction is crucial for personalized medicine. Integrating multi-omics data represents a viable approach to comprehending the intricate pathophysiology of complex diseases like cancer. Conventional machine learning techniques are not ideal for analyzing the complex interrelationships among different categories of omics data. Numerous models have been suggested using graph-based learning to uncover veiled representations and network formations unique to distinct types of omics data to heighten predictions regarding cancers and characterize patients’ profiles, amongst other applications aimed at improving disease management in medical research. The existing graph-based state-of-the-art multi-omics integration approaches for cancer subtype prediction, MOGONET, and SUPREME, use a graph convolutional network (GCN), which fails to consider the level of importance of neighboring nodes on a particular node. To address this gap, we hypothesize that paying attention to each neighbor or providing appropriate weights to neighbors based on their importance might improve the cancer subtype prediction. The natural choice to determine the importance of each neighbor of a node in a graph is to explore the graph attention network (GAT). Here, we propose MOGAT, a novel multi-omics integration approach, leveraging GAT models that incorporate graph-based learning with an attention mechanism. MOGAT utilizes a multi-head attention mechanism to extract appropriate information for a specific sample by assigning unique attention coefficients to neighboring samples. Based on our knowledge, our group is the first to explore GAT in multi-omics integration for cancer subtype prediction. To evaluate the performance of MOGAT in predicting cancer subtypes, we explored two sets of breast cancer data from TCGA and METABRIC. Our proposed approach, MOGAT, outperforms MOGONET by 32% to 46% and SUPREME by 2% to 16% in cancer subtype prediction in different scenarios, supporting our hypothesis. Our results also showed that GAT embeddings provide a better prognosis in differentiating the high-risk group from the low-risk group than raw features. 
    more » « less
  4. Objective: The rapid advancement of high-throughput technologies in the biomedical field has resulted in the accumulation of diverse omics data types, such as mRNA expression, DNA methylation, and microRNA expression, for studying various diseases. Integrating these multi-omics datasets enables a comprehensive understanding of the molecular basis of cancer and facilitates accurate prediction of disease progression. Methods: However, conventional approaches face challenges due to the dimensionality curse problem. This paper introduces a novel framework called Knowledge Distillation and Supervised Variational AutoEncoders utilizing View Correlation Discovery Network (KD-SVAE-VCDN) to address the integration of high-dimensional multi-omics data with limited common samples. Through our experimental evaluation, we demonstrate that the proposed KD-SVAE-VCDN architecture accurately predicts the progression of breast and kidney carcinoma by effectively classifying patients as long- or short-term survivors. Furthermore, our approach outperforms other state-of-the-art multi-omics integration models. Results: Our findings highlight the efficacy of the KD-SVAE-VCDN architecture in predicting the disease progression of breast and kidney carcinoma. By enabling the classification of patients based on survival outcomes, our model contributes to personalized and targeted treatments. The favorable performance of our approach in comparison to several existing models suggests its potential to contribute to the advancement of cancer understanding and management. Conclusion: The development of a robust predictive model capable of accurately forecasting disease progression at the time of diagnosis holds immense promise for advancing personalized medicine. By leveraging multi-omics data integration, our proposed KD-SVAE-VCDN framework offers an effective solution to this challenge, paving the way for more precise and tailored treatment strategies for patients with different types of cancer. 
    more » « less
  5. Abstract MotivationPredictive biological signatures provide utility as biomarkers for disease diagnosis and prognosis, as well as prediction of responses to vaccination or therapy. These signatures are identified from high-throughput profiling assays through a combination of dimensionality reduction and machine learning techniques. The genes, proteins, metabolites, and other biological analytes that compose signatures also generate hypotheses on the underlying mechanisms driving biological responses, thus improving biological understanding. Dimensionality reduction is a critical step in signature discovery to address the large number of analytes in omics datasets, especially for multi-omics profiling studies with tens of thousands of measurements. Latent factor models, which can account for the structural heterogeneity across diverse assays, effectively integrate multi-omics data and reduce dimensionality to a small number of factors that capture correlations and associations among measurements. These factors provide biologically interpretable features for predictive modeling. However, multi-omics integration and predictive modeling are generally performed independently in sequential steps, leading to suboptimal factor construction. Combining these steps can yield better multi-omics signatures that are more predictive while still being biologically meaningful. ResultsWe developed a supervised variational Bayesian factor model that extracts multi-omics signatures from high-throughput profiling datasets that can span multiple data types. Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR) adaptively determines factor rank, emphasis on factor structure, data relevance and feature sparsity. The method improves the reconstruction of underlying factors in synthetic examples and prediction accuracy of coronavirus disease 2019 severity and breast cancer tumor subtypes. Availability and implementationSPEAR is a publicly available R-package hosted at https://bitbucket.org/kleinstein/SPEAR. 
    more » « less