skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 7, 2025

Title: Cryptic host phenotypic heterogeneity drives diversification of bacteriophage λ
Abstract Bacteriophages, the most abundant and genetically diverse life forms, seemingly defy fundamental ecological theory by exhibiting greater diversity than their numerous bacterial prey. This paradox raises questions about the mechanisms underlying parasite diversity. To investigate this, we took advantage of a surprising experimental result: when bacteriophage λ is continually supplied a single host, λ repeatedly evolves multiple genotypes within the same flask that vary in their receptor use. Measurements of negative frequency-dependent selection between receptor specialists revealed that diversifying selection drove their evolution and maintenance. However, the source of environmental heterogeneity necessary to generate this type of selection was unclear, as only a single isogenic host was provided and replenished every eight hours. Our experiments showed that selection for different specialist phages oscillated over the 8-hour incubation period, mirroring oscillations in gene expression of λ’s two receptors (Escherichia coliouter membrane proteins LamB and OmpF). These receptor expression changes were attributed to both cell-to-cell variation in receptor expression and rapid bacterial evolution, which we documented using phenotypic resistance assays and population genome sequencing. Our findings suggest that cryptic phenotypic variation in hosts, arising from non-genetic phenotypic heterogeneity and rapid evolution, may play a key role in driving viral diversity.  more » « less
Award ID(s):
1934515
PAR ID:
10556596
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life‐history traits and behaviour, we inoculated axenicDrosophila melanogasterwith microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution. 
    more » « less
  2. Abstract Viruses and their hosts can undergo coevolutionary arms races where hosts evolve increased resistance and viruses evolve counter‐resistance. Given these arms race dynamics (ARD), both players are predicted to evolve along a single trajectory as more recently evolved genotypes replace their predecessors. By coupling phenotypic and genomic analyses of coevolving populations of bacteriophageλandEscherichia coli, we find conflicting evidence for ARD. Virus‐host infection phenotypes fit the ARD model, yet genomic analyses revealed fluctuating selection dynamics. Rather than coevolution unfolding along a single trajectory, cryptic genetic variation emerges and is maintained at low frequency for generations until it eventually supplants dominant lineages. These observations suggest a hybrid ‘leapfrog’ dynamic, revealing weaknesses in the predictive power of standard coevolutionary models. The findings shed light on the mechanisms that structure coevolving ecological networks and reveal the limits of using phenotypic or genomic data alone to differentiate coevolutionary dynamics. 
    more » « less
  3. Abstract Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry inPapilioswallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene,doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option ofdsxas a mimicry locus, and that evolutionary turnover ofdsxalleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages. 
    more » « less
  4. ABSTRACT AimEcological theory suggests that dispersal limitation and selection by climatic factors influence bacterial community assembly at a continental scale, yet the conditions governing the relative importance of each process remains unclear. The carnivorous pitcher plantSarracenia purpureaprovides a model aquatic microecosystem to assess bacterial communities across the host plant's north–south range in North America. This study determined the relative influences of dispersal limitation and environmental selection on the assembly of bacterial communities inhabitingS. purpureapitchers at the continental scale. LocationEastern United States and Canada. Time Period2016. Major Taxa StudiedBacteria inhabitingS. purpureapitchers. MethodsPitcher morphology, fluid, inquilines and prey were measured, and pitcher fluid underwent DNA sequencing for bacterial community analysis. Null modelling of β‐diversity provided estimates for the contributions of selection and dispersal limitation to community assembly, complemented by an examination of spatial clustering of individuals. Phylogenetic and ecological associations of co‐occurrence network module bacteria was determined by assessing the phylogenetic diversity and habitat preferences of member taxa. ResultsDispersal limitation was evident from between‐site variation and spatial aggregation of individual bacterial taxa in theS. purpureapitcher system. Selection pressure was weak across the geographic range, yet network module analysis indicated environmental selection within subgroups. A group of aquatic bacteria held traits under selection in warmer, wetter climates, and midge abundance was associated with selection for traits held by a group of saprotrophs. Processes that increased pitcher fluid volume weakened selection in one module, possibly by supporting greater bacterial dispersal. ConclusionDispersal limitation governed bacterial community assembly inS. purpureapitchers at a continental scale (74% of between‐site comparisons) and was significantly greater than selection across the range. Network modules showed evidence for selection, demonstrating that multiple processes acted concurrently in bacterial community assembly at the continental scale. 
    more » « less
  5. Van_Tyne, Daria (Ed.)
    ABSTRACT Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality.Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e., bacteriocins produced byP. aeruginosa, are phage-tail-like antimicrobials. R-pyocins have potential as antimicrobials, however, recent research suggests the diversity ofP. aeruginosavariants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested the R2-pyocin susceptibility of 139P.aeruginosavariants from 17 sputum samples of 7 CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. There was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations. IMPORTANCECystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistantPseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity ofP. aeruginosapopulations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections. 
    more » « less