skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 11, 2026

Title: Giant transposons promote strain heterogeneity in a major fungal pathogen
ABSTRACT Fungal infections are difficult to prevent and treat in large part due to strain heterogeneity, which confounds diagnostic predictability. Yet, the genetic mechanisms driving strain-to-strain variation remain poorly understood. Here, we determined the extent to whichStarships—giant transposons capable of mobilizing numerous fungal genes—generate genetic and phenotypic variability in the opportunistic human pathogenAspergillus fumigatus. We analyzed 519 diverse strains, including 11 newly sequenced with long-read technology and multiple isolates of the same reference strain, to reveal 20 distinctStarshipsthat are generating genomic heterogeneity over timescales relevant for experimental reproducibility.Starship-mobilized genes encode diverse functions, including known biofilm-related virulence factors and biosynthetic gene clusters, and many are differentially expressed during infection and antifungal exposure in a strain-specific manner. These findings support a new model of fungal evolution whereinStarshipshelp generate variation in genome structure, gene content, and expression among fungal strains. Together, our results demonstrate thatStarshipsare a previously hidden mechanism generating genotypic and, in turn, phenotypic heterogeneity in a major human fungal pathogen.IMPORTANCENo “one size fits all” option exists for treating fungal infections in large part due to genetic and phenotypic variability among strains. Accounting for strain heterogeneity is thus fundamental for developing efficacious treatments and strategies for safeguarding human health. Here, we report significant progress toward achieving this goal by uncovering a previously hidden mechanism generating heterogeneity in the human fungal pathogenAspergillus fumigatus: giant transposons, calledStarships, that span dozens of kilobases and mobilize fungal genes as cargo. By conducting a systematic investigation of these unusual transposons in a single fungal species, we demonstrate their contributions to population-level variation at the genome, pangenome, and transcriptome levels. TheStarshipcompendium we develop will not only help predict variation introduced by these elements in laboratory experiments but will serve as a foundational resource for determining howStarshipsimpact clinically relevant phenotypes, such as antifungal resistance and pathogenicity.  more » « less
Award ID(s):
2215705
PAR ID:
10656447
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Goldman, Gustavo H
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mBio
Volume:
16
Issue:
6
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sil, Anita (Ed.)
    Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A . fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence–absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A . fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A . fumigatus , with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence–absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A . fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi. 
    more » « less
  2. Hockett, Kevin Loren (Ed.)
    ABSTRACT Rhizopus microsporusis a necrotrophic post-harvest pathogen that causes significant economic losses in the agricultural sector. To explore alternatives to conventional management strategies for the mitigation of post-harvest infections, we investigated the potential of two previously identified endophyticBacillus velezensisstrains as biological control agents. Throughin vitroandin vivoexperiments, we examined the mechanisms of biocontrol displayed by twoB. velezensisstrains (KV10 and KV15) against threeR. microsporusstrains (W2-50, W2-51, and W2-58).In vitroassays assessed co-cultivability and the inhibitory effects ofB. velezensisagainstR. microsporus. The results demonstrated strain-specific antifungal activity with a reduction in fungal growth across treatments. Further analysis revealed that volatile organic compounds produced byB. velezensiscontributed to its antifungal properties. To evaluate the biocontrol efficacyin vivo, tomato fruits were inoculated withR. microsporusand subsequently treated withB. velezensis. The results support the strain-specific reduction in tomato spoilage, yielding various spoilage rates observed across treatments. Our findings highlight the potential ofB. velezensisas a promising biocontrol agent for the management ofR. microsporuspost-harvest infections in tomatoes. Further research is warranted to optimize the applicationof B. velezensisas a sustainable and environmentally friendly approach for controlling post-harvest diseases in tomatoes.IMPORTANCEOur study shows the significance of improving sustainable agriculture by offering an alternative to the use of chemical fungicides in post-harvest applications. Opportunistic fungal pathogens likeRhizopus microsporuscan have detrimental effects on post-harvest commodities like tomatoes. Post-harvest fungal infections are mainly controlled by chemical fungicides that pose health risks to humans and the environment. Utilizing biocontrol agents provides an environmentally safe alternative. Understanding the mechanisms of biocontrol employed by beneficial bacteria likeBacillus velezensison fungal pathogens gives insight into safer, more environmentally friendly alternatives to protect food crops. Our results suggest that targeted microbial solutions can mitigate post-harvest losses. 
    more » « less
  3. Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis , the two species most closely related to A. fumigatus , are not known to be pathogenic. Some of the genetic determinants of virulence (or "cards of virulence") that A . fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus , one A. oerlinghausenensis , and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity. 
    more » « less
  4. Goldman, Gustavo H (Ed.)
    ABSTRACT Infections caused by the emerging pathogenic yeastClavispora (Candida) lusitaniaecan be difficult to manage due to multi-drug resistance. Resistance to the frontline antifungal fluconazole (FLZ) inCandidaspp. is commonly acquired through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. These activated Mrr1 variants enhance FLZ efflux via upregulation of the multi-drug transporter geneMDR1. Recently, it was reported that, unlike in the well-studiedCandida albicansspecies,C. lusitaniaeandCandida parapsilosiswith activated Mrr1 also have high expression ofCDR1, which encodes another multi-drug transporter with overlapping but distinct transported substrate profiles and Cdr1-dependent FLZ resistance. To better understand the mechanisms of Mrr1 regulation ofMDR1andCDR1, and other co-regulated genes, we performed Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analysis of Mrr1 binding sites. Mrr1 bound the promoter regions ofMDR1andCDR1, as well asFLU1, which encodes another transporter capable of FLZ efflux. Mdr1 and Cdr1 independently contributed to the decreased susceptibility of theMRR1GOFstrains against diverse clinical azoles and other antifungals, including 5-flucytosine. A consensus motif, CGGAGWTAR, enriched in Mrr1-boundC. lusitaniaeDNA was also conserved upstream ofMDR1andCDR1across species, includingC. albicans. CUT&RUN and RNA-seq data were used to define the Mrr1 regulon, which includes genes involved in transport, stress response, and metabolism. Activated and inducible Mrr1 bound similar regions in the promoters of Mrr1 regulon genes. Our studies provide new evolutionary insights into the coordinated regulation of multi-drug transporters and potential mechanism(s) that aid secondary resistance acquisition in emergingCandida. IMPORTANCEUnderstanding antifungal resistance in emergingCandidapathogens is essential to managing treatment failures and guiding the development of new therapeutic strategies. Like otherCandidaspecies, the environmental opportunistic fungal pathogenClavispora(Candida)lusitaniaecan acquire resistance to the antifungal fluconazole by overexpression of the multi-drug efflux pump Mdr1 through gain-of-function (GOF) mutations in the gene encoding the transcription factor Mrr1. Here, we show thatC. lusitaniaeMrr1 also directly regulatesCDR1, another major multi-drug transporter gene, along withMDR1. In strains with activated Mrr1, upregulation ofMDR1andCDR1protects against diverse antifungals, potentially aiding the rise of other resistance mutations. Mrr1 also regulates several stress response and metabolism genes, thereby providing new perspectives into the physiology of drug-resistant strains. The identification of an Mrr1 binding motif that is conserved across strains and species will advance future efforts to understand multi-drug resistance acrossCandidaspecies. 
    more » « less
  5. Claesen, Jan (Ed.)
    ABSTRACT The human skin microbiome is a diverse ecosystem that can help prevent infections by producing biomolecules and peptides that inhibit growth and virulence of bacterial pathogens.Staphylococcus aureusis a major human pathogen responsible for diseases that range from acute skin and soft tissue infections to life-threatening septicemia. Its ability to form biofilms is a key virulence factor contributing to its success as a pathogen as well as to its increased antimicrobial resistance. Here, we investigated the ability of bacterial skin commensals to produce molecules that inhibitS. aureusbiofilm formation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified 77 human skin microbiome bacterial isolates fromStaphylococcusandBacillusgenera. Metabolites from cell-free concentrated media (CFCM) from 26 representative isolates were evaluated for their ability to inhibit biofilm formation by both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA)S. aureusstrains. CFCM, derived from most of the isolates, inhibited biofilm formation to varying extents but did not inhibit planktonic growth ofS. aureus. Size fractionation of the CFCM of threeS.epidermidisisolates indicated that they produce different bioactive molecules. Cluster analysis, based on either MALDI-TOF mass spectra or whole-genome sequencing draft genomes, did not show clear clusters associated with levels of biofilm inhibition amongS. epidermidisstrains. Finally, similar biosynthetic gene clusters were detected in allS. epidermidisstrains analyzed. These findings indicate that several bacterial constituents of the human skin microbiome display antibiofilmin vitroactivity, warranting further investigation on their potential as novel therapeutic agents. IMPORTANCEThe skin is constantly exposed to the environment and consequently to numerous pathogens. The bacterial community that colonizes healthy skin is thought to play an important role in protecting us against infections.S. aureusis a leading cause of death worldwide and is frequently involved in several types of infections, including skin and soft tissue infections. Its ability to adhere to surfaces and produce biofilms is considered an important virulence factor. Here, we analyzed the activity of different species of bacteria isolated from healthy skin onS. aureusbiofilm formation. We found that some species ofStaphylococcusandBacilluscan reduceS. aureusbiofilm formation, although a generally lower level of inhibitory activity was observed compared toS. epidermidisisolates. AmongS. epidermidisisolates, strength of activity was dependent on the strain. Our data highlight the importance of mining the skin microbiome for isolates that could help combat skin pathogens. 
    more » « less