skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trophic state resilience to hurricane disturbance of Lake Yojoa, Honduras
Abstract Cyclones are a poorly described disturbance in tropical lakes, with the potential to alter ecosystems and compromise the services they provide. In November 2020, Hurricanes Eta and Iota made landfall near the Nicaragua-Honduras border, inundating the region with a large amount of late-season precipitation. To understand the impact of these storms on Lake Yojoa, Honduras, we compared 2020 and 2021 conditions using continuous (every 16 days) data collected from five pelagic locations. The storms resulted in increased Secchi depth and decreased algal abundance in December 2020, and January and February 2021, and lower-than-average accumulation of hypolimnetic nutrients from the onset of stratification (April 2021) until mixus in November 2021. Despite the reduced hypolimnetic nutrient concentrations, epilimnetic nutrient concentrations returned to (and in some cases exceeded) pre-hurricane levels following annual water column turnover in 2021. This response suggests that Lake Yojoa’s trophic state had only an ephemeral response to the disturbance imposed by the two hurricanes, likely due to internal input of sediment derived nutrients. These aseasonal storms acted as a large-scale experiment that resulted in nutrient dilution and demonstrated the resilience of Lake Yojoa’s trophic state to temporary nutrient reductions.  more » « less
Award ID(s):
2120441
PAR ID:
10556673
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory. 
    more » « less
  2. Abstract Ecosystems vary broadly in their responses to disturbance, ranging from highly impacted to resilient or resistant. We conducted a large‐scale analysis of hurricane disturbance effects on coastal marshes by examining 20 years of data from 10 sites covering 100,000 ha at the Georgia Coastal Ecosystems Long‐Term Ecological Research site distributed across gradients of salinity and proximity to the ocean. We analyzed the impacts of Hurricanes Matthew (in 2016) and Irma (in 2017) on marsh biota (plants, crabs, and snails) and physical attributes (erosion, wrack deposition, and sedimentation). We compared these variables prior to the storms (2000–2015) to years with storms (2016, 2017) to those after the storms (2018–2020). Hurricanes generated storm surges that increased water depth and salinity of oligotrophic areas for up to 48 h. Biological variables in the marsh showed few effects of the hurricanes. The only physical variable affected was creek bank slumping; however, slumping had already increased a year before the hurricanes, suggesting that slumping could have a different cause. Thus, our study uncovered only minor, ephemeral impacts on Georgia coastal marshes, highlighting their resistance to hurricane disturbance of the lower magnitude that typically confronts this region of coastline. 
    more » « less
  3. null (Ed.)
    Anthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient‐enrichment effects within streams and rivers. We conducted a meta‐analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem). Our synthesis included 184 studies, 885 experiments, and 3497 biotic responses to nutrient enrichment. We documented widespread increases in organismal biomass and abundance (mean response = +48%) and rates of ecosystem processes (+54%) to enrichment across multiple trophic levels, with no large differences in responses among trophic levels or between autotrophic or heterotrophic food‐web pathways. Responses to nutrient enrichment varied with the nutrient added (N, P, or both) depending on rate versus state variable and experiment type, and were greater in flume and whole‐stream experiments than in experiments using nutrient‐diffusing substrata. Generally, nutrient‐enrichment effects also increased with water temperature and light, and decreased under elevated ambient concentrations of inorganic N and/or P. Overall, increased concentrations of N and/or P altered multiple food‐web pathways and trophic levels in lotic ecosystems. Our results indicate that preservation or restoration of biodiversity and ecosystem functions of streams and rivers requires management of nutrient inputs and consideration of multiple trophic pathways. 
    more » « less
  4. Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many consequences, including reduced habitat for cold-water fish species, reduced quality of drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both allochthonous and autochthonous OC loads contribute to oxygen depletion by providing substrate for microbial respiration; however, their relative contributions to oxygen depletion across diverse lake systems remain uncertain. Lake characteristics, such as trophic state, hydrology, and morphometry, are also influential in carbon-cycling processes and may impact oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic oxygen depletion, we used a two-layer process-based lake model to simulate daily metabolism dynamics for six Wisconsin lakes over 20 years (1995–2014). Physical processes and internal metabolic processes were included in the model and were used to predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC respiration in the water column contributed the most towards hypolimnetic oxygen depletion in the eutrophic study lakes. POC water column respiration and sediment respiration had similar contributions in the mesotrophic and oligotrophic study lakes. Differences in terms of source of respiration are discussed with consideration of lake productivity and the processing and fates of organic carbon loads. 
    more » « less
  5. Beisner, Beatrix E (Ed.)
    Abstract Eutrophication is increasingly becoming a problem for freshwater lakes. We evaluated the effects of additions nitrate (N as NO3−) and phosphate (P as PO43−) on phytoplankton in a temperate lake reservoir (Lake Murray, South Carolina). High-performance liquid chromatography and ChemTax were used to measure concentrations of microalgal groups in the lake in 2021–2023 and bioassays. The phytoplankton community during the summer months consisted of green algae (37%), diatoms (27%), cryptophytes (20%), cyanobacteria (11%) and dinoflagellates (4%). Bioassays of N (20-μM NaNO3), P (10-μM KH2PO4) and N + P additions were conducted monthly from April to October 2023. All microalgal groups, except cyanobacteria, exhibited nutrient co-limitation with N as the primary limiting nutrient. Similarly, cyanobacteria exhibited co-limitation, but with P as the primary limiting nutrient. Nutrient additions of N + P (but not N or P singularly) also resulted in significant community shifts, with a strong response by green algae. The management implications for this study are that increases in N and P loading and ratio changes in the lake may result in major phytoplankton community changes toward dominance by green algae. However, increasing P loading relative to N may promote cyanobacterial growth over other phytoplankton groups in this lake system. 
    more » « less