Abstract Due to their ability to strongly modify the local optical field through the excitation of surface plasmon polaritons (SPPs), plasmonic nanostructures are often used to reshape the emission direction and enhance the radiative decay rate of quantum emitters, such as semiconductor quantum dots (QDs). These features are essential for quantum information processing, nanoscale photonic circuitry, and optoelectronics. However, the modification and enhancement demonstrated thus far have typically led to drastic alterations of the local energy density of the emitters, and hence their intrinsic optical properties, leaving little room for active control. Here, dynamic tuning of the energy states of a single semiconductor QD is demonstrated by optically modifying its local dielectric environment with a nearby plasmonic structure, instead of directly coupling it to the QD. This technique leaves intact the intrinsic optical properties of the QD, while enabling a reversible all‐optical control mechanism that operates below the diffraction limit at low power levels. 
                        more » 
                        « less   
                    
                            
                            Ultrafast Symmetry Control in Photoexcited Quantum Dots
                        
                    
    
            Abstract Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales. Using a combination of ultrafast electron diffraction and total X‐ray scattering, in conjunction with atomic‐scale structural modeling and first‐principles calculations, it is revealed that symmetry‐broken lead sulfide quantum dots restore to a centrosymmetric phase upon photoexcitation. The symmetry restoration is driven by photoexcited electronic carriers, which suppress lead off‐centering for about 100 ps. Furthermore, the change in symmetry is closely correlated with the electronic properties, and the bandgap transiently red‐shifts in the symmetry‐restored quantum dots. Overall, this study elucidates reversible symmetry changes in colloidal quantum dots, and more broadly defines a new methodology to optically control symmetry in nanoscale systems on ultrafast timescales. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10556719
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Attainment of quantum‐confined materials with remarkable stoichiometric, geometric, and structural control has been made possible by advances in colloidal nanoparticle synthesis. The quantum states of these systems can be tailored by selective spatial confinement in one, two, or three dimensions. As a result, a multitude of prospects for controlling nanoscale energy transfer have emerged. An understanding of the electronic relaxation dynamics for quantum states of specific nanostructures is required to develop predictive models for controlling energy on the nanoscale. Variable‐temperature, variable‐magnetic field ( ) optical methods have emerged as powerful tools for characterizing transient excited states. For example, magnetic circular photoluminescence (MCPL) spectroscopy can be used to calculate electronic g factors, assign spectroscopic term symbols for transitions within metal nanoclusters, and quantify the energy gaps separating electronic fine‐structure states. spectroscopic methods are effective for isolating the carrier dynamics of specific quantum fine‐structure states, enabling determination of electronic relaxation mechanisms such as electron‐phonon scattering and energy transfer between assembled nanoclusters. In particular ‐MCPL is especially effective for studying electronic spin‐state dynamics and properties. This Review highlights specific examples that emphasize insights obtainable from these methods and discusses prospects for future research directions.more » « less
- 
            Both organohalide perovskites and colloidal quantum dots are attractive and promising materials for optoelectronic applications. Recent experiments have combined the two to create “quantum dot-in-perovskite” assemblies for highly efficient light emissions. In this work, we unravel photoexcitation dynamics at the interface between the perovskite and the quantum dot by means of first-principle non-adiabatic molecular dynamics simulations. We find that such assemblies adopt the type-I band structure and are free of defect states. The interfacial and the electronic structure are robust against the thermal fluctuations at 300K. The lowest excitation is predicted to be localized entirely on the quantum dot and the photoexcited charge transfer takes place in a picosecond timescale. The charge transfer dynamics of the photoexcited electron and hole exhibits a moderate asymmetry, which can be attributed to the differences in electronic coupling between the donor and the acceptor and the electron-phonon coupling. The ultrafast and balanced charge transfer dynamics endows the ‘dot-in-a-crystal’ devices with unprecedented performance, which could lead to important applications in photovoltaics, photocatalysis, and infrared light emissions.more » « less
- 
            Abstract The future of modern optoelectronics and spintronic devices relies on our ability to control the spin and charge degrees of freedom at ultrafast timescales. Rashba spin-split quantum well states, 2D states that develop at the surface of strong spin-orbit coupling materials, are ideal given the tunability of their energy and spin states. So far, however, most studies have only demonstrated such control in a static way. In this study, we demonstrate control of the spin and energy degrees of freedom of surface quantum well states on Bi2Se3at picosecond timescales. By means of a focused laser pulse, we modulate the band-bending, producing picosecond time-varying electric fields at the material’s surface, thereby reversibly modulating the quantum well spectrum and Rashba effect. Moreover, we uncover a dynamic quasi-Fermi level, dependent on the Lifshitz transition of the second quantum well band bottom. These results open a pathway for light-driven spintronic devices with ultrafast switching of electronic phases, and offer the interesting prospect to extend this ultrafast photo-gating technique to a broader host of 2D materials.more » « less
- 
            Colloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III–group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials. We directly nucleated and grew colloidal quantum dots in molten inorganic salts by harnessing molten salt redox chemistry and using surfactant additives for nanocrystal shape control. Synthesis temperatures above 425°C are critical for realizing photoluminescent GaAs quantum dots, which emphasizes the importance of high temperatures enabled by molten salt solvents. We generalize the methodology and demonstrate nearly a dozen III-V solid-solution nanocrystal compositions that have not been previously reported.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
