skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chromosomal-Level Genome Assembly of the Antarctic Sea Urchin Sterechinus neumayeri : A Model for Antarctic Invertebrate Biology
Abstract The Antarctic sea urchin Sterechinus neumayeri (Echinoida; Echinidae) is routinely used as a model organism for Antarctic biology. Here, we present a high-quality genome of S. neumayeri. This chromosomal-level assembly was generated using PacBio long-read sequencing and Hi-C chromatin conformation capture sequencing. This 885.3-Mb assembly exhibits high contiguity with a scaffold length N50 of 36.7 Mb assembled into 20 chromosomal length scaffolds. These putative chromosomes exhibit a high degree of synteny compared to other sea urchin models. We used transcript evidence gene modeling combined with sequence homology to identify 21,638 gene models that capture 97.4% of BUSCO orthologs. Among these, we were able to identify and annotate conserved developmental gene regulatory network orthologs, positioning S. neumayeri as a tractable model for comparative studies on evolution and development.  more » « less
Award ID(s):
1916665 2038149 2038088 2225144
PAR ID:
10556737
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
16
Issue:
11
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lytechinus variegatus is a camarodont sea urchin found widely throughout the western Atlantic Ocean in a variety of shallow-water marine habitats. Its distribution, abundance, and amenability to developmental perturbation make it a popular model for ecologists and developmental biologists. Here, we present a chromosomal-level genome assembly of L. variegatus generated from a combination of PacBio long reads, 10× Genomics sequencing, and HiC chromatin interaction sequencing. We show L. variegatus has 19 chromosomes with an assembly size of 870.4 Mb. The contiguity and completeness of this assembly are reflected by a scaffold length N50 of 45.5 Mb and BUSCO completeness score of 95.5%. Ab initio and transcript-informed gene modeling and annotation identified 27,232 genes with an average gene length of 12.6 kb, comprising an estimated 39.5% of the genome. Repetitive regions, on the other hand, make up 45.4% of the genome. Physical mapping of well-studied developmental genes onto each chromosome reveals nonrandom spatial distribution of distinct genes and gene families, which provides insight into how certain gene families may have evolved and are transcriptionally regulated in this species. Lastly, aligning RNA-seq and ATAC-seq data onto this assembly demonstrates the value of highly contiguous, complete genome assemblies for functional genomics analyses that is unattainable with fragmented, incomplete assemblies. This genome will be of great value to the scientific community as a resource for genome evolution, developmental, and ecological studies of this species and the Echinodermata. 
    more » « less
  2. Reinke, Valerie (Ed.)
    Abstract As an entomopathogenic nematode (EPN), Steinernema hermaphroditum parasitizes insect hosts and harbors symbiotic Xenorhabdus griffinae bacteria. In contrast to other Steinernematids, S. hermaphroditum has hermaphroditic genetics, offering the experimental scope found in Caenorhabditis elegans. To enable study of S. hermaphroditum, we have assembled and analyzed its reference genome. This genome assembly has five chromosomal scaffolds and 83 unassigned scaffolds totaling 90.7 Mb, with 19,426 protein-coding genes having a BUSCO completeness of 88.0%. Its autosomes show higher densities of strongly conserved genes in their centers, as in C. elegans, but repetitive elements are evenly distributed along all chromosomes, rather than with higher arm densities as in C. elegans. Either when comparing protein motif frequencies between nematode species or when analyzing gene family expansions during nematode evolution, we observed two categories of genes preferentially associated with the origin of Steinernema or S. hermaphroditum: orthologs of venom genes in S. carpocapsae or S. feltiae; and some types of chemosensory G protein-coupled receptors, despite the tendency of parasitic nematodes to have reduced numbers of chemosensory genes. Three-quarters of venom orthologs occurred in gene clusters, with the larger clusters comprising functionally diverse gene groups rather than paralogous repeats of a single venom gene. While assembling S. hermaphroditum, we coassembled bacterial genomes, finding sequence data for not only the known symbiont, X. griffinae, but also for eight other bacterial genera. All eight genera have previously been observed to be associated with Steinernema species or the EPN Heterorhabditis, and may constitute a second bacterial circle of EPNs. 
    more » « less
  3. Abstract BackgroundThe increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird). FindingsThe desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species. ConclusionsOur results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles. 
    more » « less
  4. Abstract Wildlife diseases, such as the sea star wasting (SSW) epizootic that outbroke in the mid-2010s, appear to be associated with acute and/or chronic abiotic environmental change; dissociating the effects of different drivers can be difficult. The sunflower sea star, Pycnopodia helianthoides, was the species most severely impacted during the SSW outbreak, which overlapped with periods of anomalous atmospheric and oceanographic conditions, and there is not yet a consensus on the cause(s). Genomic data may reveal underlying molecular signatures that implicate a subset of factors and, thus, clarify past events while also setting the scene for effective restoration efforts. To advance this goal, we used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly that was then annotated using RNA-seq-informed gene prediction. The genome assembly is 484 Mb long, with contig N50 of 1.9 Mb, scaffold N50 of 21.8 Mb, BUSCO completeness score of 96.1%, and 22 major scaffolds consistent with prior evidence that sea star genomes comprise 22 autosomes. These statistics generally fall between those of other recently assembled chromosome-scale assemblies for two species in the distantly related asteroid genus Pisaster. These novel genomic resources for P. helianthoides will underwrite population genomic, comparative genomic, and phylogenomic analyses—as well as their integration across scales—of SSW and environmental stressors. 
    more » « less
  5. As an entomopathogenic nematode (EPN), Steinernema hermaphroditum parasitizes insect hosts and harbors symbiotic Xenorhabdus griffinae bacteria. In contrast to other Steinernematids, S. hermaphroditum has hermaphroditic genetics, offering the experimental scope found in Caenorhabditis elegans. To enable biological analysis of S. hermaphroditum, we have assembled and analyzed its reference genome. This genome assembly has five chromosomal scaffolds and 83 unassigned scaffolds totaling 90.7 Mb, with 19,426 protein-coding genes having a BUSCO completeness of 88.0%. Its autosomes show higher densities of strongly conserved genes in their centers, as in C. elegans, but repetitive elements are evenly distributed along all chromosomes, rather than with higher arm densities as in C. elegans. Either when comparing protein motif frequencies between nematode species or when analyzing gene family expansions during nematode evolution, we observed two categories of genes preferentially associated with the origin of Steinernema or S. hermaphroditum: orthologs of venom genes in S. carpocapsae or S. feltiae; and some types of chemosensory G protein-coupled receptors, despite the tendency of parasitic nematodes to have reduced numbers of chemosensory genes. Three-quarters of venom orthologs occurred in gene clusters, with the larger clusters comprising functionally diverse pathogenicity islands rather than paralogous repeats of a single venom gene. While assembling the genome of S. hermaphroditum, we coassembled bacterial genomes, finding sequence data for not only the known symbiont, X. griffinae, but also for eight other bacterial genera. All eight genera have previously been observed to be associated with Steinernema species or the EPN Heterorhabditis, and may constitute a “second bacterial circle” of EPNs. The genome assemblies of S. hermaphroditum and its associated bacteria will enable use of these organisms as a model system for both entomopathogenicity and symbiosis. 
    more » « less